Взаимодействие бета-частиц с веществом (150112)

Посмотреть архив целиком











Курсовая работа на тему:


Взаимодействие бета-частиц с веществом



Для того чтобы уметь регистрировать ядерное излучение и для того чтобы уметь от него защищаться (если это нужно), необ­ходимо знать, за счет каких процессов теряет свою энергию части­ца, проходя через вещество; какова проникающая способность частиц; как зависят вероятности различных процессов взаимодей­ствия от параметров частицы (заряда, массы, энергии) и от свойств вещества (заряда ядер, плотности, ионизационного потен­циала).

Перечислим основные процессы взаимодействия заряженных частиц и Y-квантов с веществом (вопрос о взаимодействии нейтро­нов будет рассмотрен отдельно в главе, посвященной физике ней­тронов).



Взаимодействие заряженных частиц со средой.


1. Основной причиной потерь энергии заряженной частицей при прохождении через вещество являются столкновения ее с атомами этого веще­ства. Ввиду того, что масса ядра всегда велика по сравнению с массой электронов атома, можно достаточно четко провести раз­личие между «электронными столкновениями», при которых энер­гия падающей частицы передается одному из электронов атома, в результате чего происходит возбуждение или ионизация атома (неупругое столкновение), и «ядерными Столкновениями», при ко­торых импульс и кинетическая энергия частицы частично перехо­дят в поступательное движение атома как целого (упругое столк­новение). Повторяясь, эти ядерные столкновения приводят к многократному рассеянию частиц в веществе.

2. Существенную роль в потерях энергии легких заряженных частиц (электронов) играет также радиационное торможение. Сущность этого процесса заключается в том, что при рассеянии заряженной частицы кулоновским полем ядра или электрона эта частица получает ускорение, что в соответствии с законами электродинамики всегда приводит к электромагнитному излучению. Возникает непрерывный спектр -лучей — тормозное излучение.

  1. В случае тяжелой частицы (протон, - частица и др.), когда ее энергия достаточно велика для преодоления кулоновского барье­ра ядра, может произойти также процесс потенциального рассея­ния на ядрах или же ядерная реакция, сопровождающаяся вылетом из ядра различных частиц, испусканием - квантов, делением ядра и др.

  2. При движении заряженной частицы в среде со скоростью, превышающей фазовую скорость света в этой среде , где п — показатель преломления среды, возникает специфическое свечение, названное излучением Вавилова—Черенкова.


Взаимодействие -излучения со средой.


-лучи, проходя через вещество, теряют свою энергию главным образом за счет следую­щих явлений.

  1. Комптон-эффект, или рассеяние - квантов на электронах, при котором фотоны передают часть своей энергии электронам атома.

  2. Фотоэффект, или поглощение - кванта атомом, когда вся энергия фотона передается электрону, вылетающему в результате этого из атома.

  3. Образование электрон-позитронных пар — процесс, который может происходить в поле ядра или другой частицы при энергиях -квантов

  4. Ядерные реакции, возникающие обычно при энергиях -квантов, превышающих 10 МэВ.

Во многих физических экспериментах применяются пучки электронов, причем энергия электронов может быть самой раз­ной — от долей электронвольта до миллионов электронвольт. В ядерной физике используются как пучки электронов, полученные на ускорителе, так и пучки электронов, возникающих при бета-распаде радиоактивных ядер - "бета-частицы". В обоих случаях могут быть получены сведения о свойствах атомных ядер и стро­ении вещества. Знание энергии бета-излучения необходимо для многих научных и практических целей.

В отличие от альфа-частиц бета-частицы, испускаемые каким-либо радиоактивным веществом, имеют непрерывный, энергети­ческий спектр, в котором представлены бета-частицы, имеющие все значения кинетической энергии от нуля до некоторого макси­мального значения.

Бета-распадом называется самопроизвольное превращение атомного ядра, при котором его заряд (Z) меняется на единицу, а массовое число (А) остается неизменным.

Различают три вида бета-распада:

1. -распад, при котором из ядра испускается электрон и антинейтрино :

(1)

При - распаде , т. е. число протонов в ядре увеличи­вается на единицу, а число нейтронов уменьшается на единицу.

2. -распад, при котором из ядра испускается позитрон и нейтрино :

. (2)

-распад может происходить только в случае, если масса ис­ходного атома превышает массу конечного атома на величину . При -распаде.

3. Электронный захват, при котором один из электронов атом­ной оболочки (например, электрон К-оболочки) захватывается ядром и при этом испускается нейтрино :

(3)

Если энергия распада больше энергии связи К-электронов (са­мых близких к ядру), то происходит преимущественно К-захват. При электронном захвате .

Бета-процессы обусловлены слабым взаимодействием - одним из четырех видов известных фундаментальных взаимодействий. Однако вероятность бета-распада в отличие от "слабого" распада элементарных частиц, зависит от структуры ядра. Исследования бета-процессов привели к крупным открытиям в физике: обнаружению новой элементарной частицы — нейтрино и открытию несохранения четности при слабых взаимодействиях. Экспери­ментальное изучение бета-распада приносит много новых данных о структуре ядер.

При - и -распаде из ядра испускаются две частицы. В каждом единичном акте распада энергия перехода делится меж­ду бета-частицей и нейтрино (энергией отдачи ядра можно прене­бречь), так что кинетическая энергия электрона (или позитрона) может принимать любые значения от нуля до максимально воз­можной величины . При электронном захвате энергия делится только между нейтрино и ядром отдачи, при этом нейтрино уно­сит практически всю энергию распада. Для большого количества одинаковых ядер в результате статистического усреднения полу­чается вполне определенное распределение электронов (позитро­нов) по энергиям. Это распределение называется бета-спектром, а величина - граничной энергией бета-спектра. Значения для бета-распада для различных радиоактивных веществ могут сильно различаться. Например, радиоактивный нуклид (три­тий) испускает бета-частицы с =18,60 кэВ, в случае же граничная энергия спектра равна 16,6 МэВ. Большая часть зна­чений лежит в интервале 10—5000 кэВ. Максимальная энер­гия бета-частиц определяет энергию распада и является важной физической величиной.








Рис. 1. Бета-спектр и схема распада 32Р


Рис. 2. Бета-спектр с линиями электронов внутренней конверсии

Типичный бета-спектр показан на рис. 1. Бета-распад 32Р происходит на основное состояние 32S и не сопровождается -излучением (см. схему распада). Во многих случаях бета-распад происходит на возбужденные уровни ядра-продукта. В этих слу­чаях бета-и:злучение сопровождается -излучением. При этом возбужденное ядро может передать энергию электронам атомных оболочек, в результате чего образуются моноэнергетические группы электронов с энергией , где hv — энер­гия -излучения, Есв — энергия связи на одной из атомных обо­лочек. Это явление называется эффектом внутренней конвер­сии -излучения. Электроны внутренней конверсии могут затруд­нять измерения бета-спектров. Участок бета-спектра с линиями электронов внутренней конверсии при распаде показан на рис. 2.



Взаимодействие электронов с веществом


Электроны, движущиеся в веществе, взаимодействуют с его атомами, в результате чего теряют свою энергию и отклоняются от первоначального направления, т. е. рассеиваются. Рассеяние называется упругим, если сохраняется сумма кинетических энер­гий взаимодействующих частиц. Всякое иное рассеяние называ­ется неупругим. Следует различать взаимодействие электронов с атомными электронами и атомными ядрами, хотя оба вида взаи­модействия всегда происходят одновременно.

Взаимодействие -частиц с атомными электронами приводит к передаче атомному электрону некоторой энергии, следствием чего является либо ионизация, либо возбуждение ато­ма. Оба вида передачи энергии имеют примерно равную вероят­ность и объединяются под общим названием "ионизационные по­тери энергии". Теория ионизационных потерь электронов была разработана Бором, а также Бете и Блохом, которые получили формулу для потери энергии на ионизацию на единице пути

(4)

где и Е — скорость и кинетическая энергия падающего элек­трона; и е масса покоя и заряд электрона; Z заряд ядра; п — число атомов в 1 см3 среды (, где А — атомный номер вещества); — средняя энергия возбуждения атома; — член, учитывающий поляризацию среды.

Л. Д. Ландау показал, что средние потери энергии моно­хроматическими электронами при прохождении слоя вещества с атомным номером А и зарядовым числом Z составляют:

(5)

где — плотность вещества, г/см3, — толщина слоя вещества, см.

Так как отношение Z/A для разных веществ приблизительно постоянно, то величина (dE/dx) в формуле (5.5) практически за­висит лишь от плотности вещества . Очень слабая зависимость от Z проявляется только в средней энергии возбуждения , ко­торая стоит под знаком логарифма. Следовательно, пробег элек­тронов с данной первоначальной энергией Е в различных веще­ствах с одинаковой плотностью будет приблизительно одинако­вым. Поэтому за меру толщины вещества, взаимодействующего с электронами, берут произведение линейной толщины и плотности вещества и выражают пробег в единицах г /см2 или мг/см2.


Случайные файлы

Файл
168854.rtf
ROM-0126.DOC
19054-1.rtf
105011.rtf
diplom.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.