Технология строительства промышленного здания с использованием железобетонных конструкций (144464)

Посмотреть архив целиком



Содержание



Введение

Исходные данные к проектированию

1. Компоновка поперечной рамы

2. Сбор нагрузок на поперечную раму

3. Статический расчет поперечной рамы

3.1 Статический расчёт поперечной рамы

4. Расчёт и конструирование крайней колонны

4.1 Характеристики бетона и арматуры

4.2 Расчёт прочности надкрановой части колонны

4.3 Расчёт прочности подкрановой части колонны

4.4 Расчёт крановой консоли

4.5 Конструирование арматуры колонны

5. Расчёт и конструирование фундамента под крайнюю колонну

5.1 Определение геометрических размеров фундамента

5.2 Расчёт и конструирование арматуры фундамента

6. Расчёт и конструирование сегментной железобетонной фермы покрытия

6.1 Определение усилий в элементах фермы

6.2 Расчет верхнего пояса

6.3 Расчет нижнего пояса

6.4 Расчет элементов решетки

6.5 Конструирование элементов фермы

Список литературы





Введение



В последние пятьдесят лет в строительстве очень интенсивно стал применяться железобетон, как основной конструктивный материал для возведения зданий и сооружений различных типов. Прежде всего, это связано наличием у него ряда особенностей (прочность, долговечность, не подвержен коррозии как сталь и гниению как древесина, огнестойкость, устойчивость к агрессивной среде), которые и придают железобетону широкое применение в строительстве, как небольших зданий, так и особо важных объектах (плотины, сооружения оборонного назначения и др.). На сегодняшний день железобетон применяется в 80% строящихся зданий и сооружений.

В данном курсовом проекте рассчитаны и сконструированы основные несущие конструкции (колонна крайнего ряда, фундамент колонны и ферма покрытия) одноэтажного, двухпролётного промышленного здания.





Исходные данные к проектированию



1. Конструктивная схема здания:





2. Геометрические характеристики объекта:

- общая протяжённость здания K=132м

- пролет l1=27 м;

- шаг колонн s=12м;

- высота от нулевой отметки до верха головки подкранового рельса Нр=14м.

3. Тип стропильной фермы кровли – сегментная ферма

4. Расчётное сопротивление грунта под подошвой фундамента Rгр =3,6∙10-1МПа.

5. Грузоподъёмность мостового крана – Q=50т.

6. Место строительства – г. Екатеренбург.





1. Расчёт и конструирование ограждающих конструкций



Определение габаритных размеров элементов здания

Колонна крайнего ряда

Определяем полную высоту колонны по следующей формуле:



H0=H1+ H2 , (1.1.1)



где, H1 – высота нижней части колонны от обреза фундамента до верха подкрановой консоли, определяемая по формуле (1.1.2):



Н1= Нр – (hп.б. + hр) + hоф, (1.1.2)



где, Нр =14 м – высота до верха рельса до обреза фундамента;

hоф=150 мм – расстояние о т нулевой отметки до отметки обреза фундамента;

hп.б – высота подкрановой балки, принимаемая при шаге колонн 12м равной 1,4 м;

hр- высота подкранового рельса, принимаем равной 150мм;

Н2 –высота верхней части колонны, определяемая как сумма высот подкрановой балки, рельса, габаритного размера мостового крана, а также необходимым нормативным зазором между краном и стропильной системой.



H2=Hcr + (hп.б. + hр) + c



Hcr =3150мм – высота крана (прил.1 [3]);

с – нормированный зазор между краном и стропильной фермой, принимаем с=150мм;

Высота нижней части колонны:

Н1=14 – (1,4 +0,15) +0,15 = 12,3 м

Высота верхней части колонны:

H2= 3,15+ (1,4 +0,15) +0,15 = 4,85 м

Полная высота колонны крайнего ряда:

Hкр=12,3+4,85=17,15 м

Окончательно принимаем Hкр=18 м, что отвечает модулю кратности 1,2; при этом изменив высоту надкрановой части H2=5,7 м.

Привязку крайних колонн к разбивочным осям здания при шаге 12 м принимаем 250мм, т.к высота колонны >16 м . Соединение стропильных конструкций с колоннами выполняем путём сварки закладных деталей и в расчётной схеме поперечной рамы считаем его шарнирным.

Принимаем согласно грузоподъёмности мостового крана 50т и полной высоты крайней колонны сквозное сечение колонны, для средней колонны принимаем сквозную двухветвевую колонну.

Размеры сечения колонн устанавливаем с учетом обеспечения необходимой жесткости колонн:





Крайняя колонна: Средняя колонна:

(мм); (мм);

;

b=380мм

(мм);

;

(мм);

(мм);

(h1=[1/10…1/14]H1).

Ввиду того, что проектируемое промышленное здание имеет протяжённость 132 м выше чем максимально допустимый размер температурного блока (60м; 72м), то в выбранном объекте необходимо устройство температурных швов. Из условия необходимость устройства температурных швов разбиваем здание на 2 температурных блока размерами 66 м. Си 48 м. необходимость устройства температурных швов разбиваем здание на 3 температурных блока размерами 60перечной разбивочной

Поперечный температурный шов выполняем на спаренных колоннах, при этом ось температурного шва совмещаем с поперечной разбивочной осью, а оси колонн смешаем с разбивочной оси на 500мм.

Расстояние от разбивочной оси ряда до оси подкрановой балки принимаем равной λ=750мм (для кранов с грузоподъёмностью до 50т)

Пролет мостового крана:



Lк=l – 2L1=27000-2∙750=25500мм.





2. Сбор нагрузок на поперечную раму ОПЗ



Постоянные нагрузки на ригель рамы от веса кровли, стропильных балок принимаются обычно равномерно распределенными по длине ригеля.

Постоянные нагрузки зависят от типа покрытия, которое может быть тяжелым или легким, утепленным или не утепленным. Покрытие состоит из сборных железобетонных плит, опирающихся непосредственно на балки, пароизоляции, теплоизоляционного слоя, водоизоляционного ковра, защитного слоя. Толщина теплоизоляционного слоя принята без теплотехнического расчета в зависимости от расчетной зимней температуры наружного воздуха.

Все нагрузки подсчитываются с учетом коэффициента надежности по назначению (γн = 0,95 для большинства промышленных зданий).

Определение постоянной нагрузки от покрытия, стенового ограждения и от собственной массы конструкций

Постоянная поверхностная распределенная нагрузка от покрытия, включая собственный вес железобетонных конструкций шатра определенная в таблице 1.



Таблица 1

Постоянная поверхностная распределенная нагрузка от покрытия

Состав покрытия

Нормативная, кПа

Коэффициент перегрузки

Расчетная, кПа

Защитный слой гравия на битумной мастике (γ = 21 кН/м3, t = 20 мм)

0,4

1,3

0,52

Гидроизоляция (4 слоя рубероида)

0,2

1,3

0,26

Утеплитель (пенопласт γ = 0,5 кН/м3, t = 100 мм)

0,05

1,2

0,06

Пароизоляция (1 слой рубероида)

0,05

1,3

0,065

Ж/б ребристые плиты покрытия (3х12 м) с учетом заливки швов,

1,72

1,1

1,98

Железобетонные фермы L=27 м,

0,42

1,1






Расчётная равномерно распределенная линейная нагрузка на ригель рамы определяется по формуле:



,



где b – шаг поперечных рам, b = 12 м;

Опорная реакция ригеля рамы на крайней колонне:



FR,кр = qП ·L/2 = 38,17·27/2 = 515,3 кН,



на средней колонне:



FR,ср = qП ·L = 38,17·27 = 1030,6 кН,



где L – пролет здания, равный 27 м.

Расчётная нагрузка от стеновых панелей и остекления в верхней части колонны:





Расчётная нагрузка передаваемая на фундаментную балку от веса остекления и стенового ограждения в нижней части колонны:





Поверхностная масса стеновых панелей 200 кг/м2 (Qст=2 кН/м2), переплетов с остеклением 35 кг/м2 (Qок=0,35 кН/м2).

γf,ст = 1,2 – для стен; для остекления γf,ок = 1,1;

h – высота стеновой панели или остекления.

Расчетная нагрузка от подкрановых балок:



Fпб= γf ∙ γн ∙ Gпб = 0,95 ∙ 1,1 ∙ 115 =120,18 кН,



Gпб – нормативный вес подкрановой балки пролетом L = 27 м.

Расчетная нагрузка от веса колонн.

Крайние колонны:

надкрановая часть



;



подкрановая часть

кН

Средние колонны:

Определение нагрузок от давления снега и ветра

Снеговая нагрузка

По приложению к СНиП 2.01.07 – 85* «Нагрузки и воздействия» вес снегового покрова в Екатеринбурге (расположен в I–ом снеговом районе) расчётное значение снеговой нагрузки so = 1,8 кПа.

Линейная распределенная нагрузка от снега на ригель рамы определяется по формуле:



qсн = γн· μ · so · b = 0,95·1·1,8·12 = 20,52 кН/м,



где so —расчётное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли, принимаемая в зависимости от района строительства;

μ – коэффициент перехода от нагрузки на земле к нагрузке на 1 м2 проекции кровли, при уклоне α ≤25º принять равным единице;

b — шаг стропильных конструкций;

Расчетная снеговая нагрузка:

на крайние колонны:



Fкр, сн = qсн ·L/2 =кН;



на средние колонны:



Fср, сн = qсн ·L =кН.



Ветровая нагрузка

По приложению к СНиП 2.01.07 – 85 «Нагрузки и воздействия» скоростной нормативный напор ветра в Екатеринбурге (расположена во II-ом районе по давлению ветра) wo=0,38 кН/м2. Тип местности В (города с окраинами, лесные массивы и подобные местности, равномерно покрытые препятствиями высотой более 10 м).

При расчете одноэтажных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1.5, размещаемых в местностях типов А и В, учитывается только статическая составляющая ветровой нагрузки, соответствующая установившемуся напору на здание. Характер распределения статической составляющей ветровой нагрузки в зависимости от высоты над поверхностью земли определяют по формуле:



qB = γн γf weq c b,



где weq —эквивалентное по моменту в заделке значение ветрового давления;

с — аэродинамический коэффициент; c  0,8  для наветренной стороны, c0,6  для подветренной стороны;

γf — коэффициент коэффициент перегрузки, который для зданий равен 1,2;

b — ширина расчетного блока.

Определим ординаты эпюр нормативного ветрового давления на раму на высоте 5; 10; 12,3; 18 м. Коэффициент k, учитывающий изменение ветрового давления по высоте здания, определим интерполяцией по таблице 6 СНиП 2.01.07-85*:



Табл. 2

Z высота, м

ki

w0,k = w0· ki , кПа

0 - 5

0,5

0,15

10

0,65

0,195

12,3

0,714

0,214

18

0,738

0,22



Переменный по высоте колонны скоростной напор заменяем равномерно распределённым, эквивалентным по моменту в заделке колонны (консольной балки длиной 12,3 м) по формуле:





где – сумма моментов относительно заделки колонны равнодействующих, определенных на участках в пределах высоты колонны с линейно изменяющейся ветровой нагрузкой.

Расчётная погонная нагрузка от ветра на крайние до отметки 18 м:

с наветренной стороны w = 0,95·1,2·0,232·0,8·12=2,54 кН/м;

с заверенной стороны wp = 0,95·1,2·0,232·0,6·12=1,91 кН/м.

Ветровую нагрузку на шатёр – выше отметки 18 м (от низа ригеля до наиболее высокой точки здания), заменяем сосредоточенной силой, приложенной в уровне низа ригеля рамы (на расчётной схеме). Определим сосредоточенную силу от ветровой нагрузки:





Определение нагрузки от крановых воздействий

Вертикальные усилия от мостового крана

Согласно ГОСТ 25546–82 принимаем следующие характеристики для крана Q = 50/5 т: Fn,max = 465 кН, пролёт крана Lк = 27– 2∙0,75 = 25,5 м, база крана K = 5250 мм, ширина крана В = 6760 мм.

Вертикальная крановая нагрузка передается на подкрановые балки в виде сосредоточенных сил Fmax и Fmin при их невыгодном положении на подкрановой балке. Расчетное давление на колонну, к которой приближена тележка, определяется по формуле:



Dmax = γн∙γf ∙пс∙ Fn,max ∙∑yi ,



где γf – коэффициент перегрузки;

nс – коэффициент сочетаний, принимаемый равным 0,85 при 2-х кранах у крайней колонны и 0,70 при 4-х кранах у средней колонны;

Fn,max – нормативное вертикальное усилие колеса;

yi – сумма ординат линий влияния.

Силу Dmin можно определить если заменить в формуле Fn,max на F n,min, т. е. на нормативные усилия, передаваемые колесами другой стороны крана на противоположную колонну.

Наименьшее давление колеса крана вычисляется по формуле (XIII.1 [1]):



,



где Q —грузоподъемность крана в т;

Q k — полный вес крана с тележкой, т;


Случайные файлы

Файл
104635.rtf
2904.rtf
170184.rtf
91054.rtf
3702-1.rtf