Векторные многоугольники в физических задачах (112089)

Посмотреть архив целиком

Министерство образования Республики Беларусь

Учреждение образования

"Брестский государственный университет имени А.С. Пушкина"

Физический факультет

Кафедра теоретической физики и астрономии





Курсовая работа

ВЕКТОРНЫЕ МНОГОУГОЛЬНИКИ В ФИЗИЧЕСКИХ ЗАДАЧАХ

по теоретической физике

Специальность: Физика и информатика




Выполнил

Научный руководитель










Брест 2010


Содержание


Введение

1. О решении физических задач в средней школе

1.1 О возможности применения векторных многоугольников для решения физических задач

1.2 Роль решения задач в процессе обучения физике

1.3 Традиционный способ решения задач кинематики и динамики в школьном курсе физики

2. О векторных способах решения задач механики

2.1 Векторные треугольники скоростей и перемещений в задачах

2.2 Векторные многоугольники сил в задачах

2.3 Векторные многоугольники импульсов в задачах

2.4 Векторные диаграммы импульсов в задачах о столкновениях частиц

Заключение

Литература


Введение


Межпредметные связи физики и математики вполне естественны: физика не только экспериментальная, но и точная наука, широко применяющая различные математические методы. Математика является языком физики, и свободное владение математическим аппаратом облегчает понимание физической сущности явлений и процессов. Однако, изучая, разрабатывая и используя новый математический аппарат, физики иногда незаслуженно забывают о ранее найденных и веками эффективно служивших делу физической науки математических способах и приемах. Изучение в школе дифференциального и интегрального исчисления, несомненно, способствует приобщению школьников к современным методам научных исследований, решение многих физических задач при этом существенно упрощается. Но в механике есть ряд задач повышенной для школьников трудности, которые решаются значительно проще не с помощью дифференцирования и интегрирования, а при использовании несложных геометрических приемов, вполне доступных учащимся старших классов (особенно классов с углубленным изучением физики). Примером может служить "забытый" в современной средней школе метод решения задач кинематики и динамики, основанный на построении так называемых векторных многоугольников перемещений, скоростей, ускорений, сил, импульсов.

При изучении механики в школьном курсе физики предполагается знакомство с векторным способом кинематического описания движения, с векторной формой записи законов и формул динамики, но значительно больше внимания и времени уделяется традиционным координатному и естественному способам. Вместе с тем в ряде случаев векторный способ имеет преимущество перед координатным, не только упрощая решение конкретной задачи, но и превращая иногда сложные на первый взгляд задачи в подстановочные, решаемые практически устно.

В данной работе будут даны краткие теоретические основы и некоторые методические рекомендации по возможности применения геометрических (векторных) способов решения избранных задач кинематики и динамики в школьном курсе физики. На примерах решения конкретных задач механики будет показана эффективность применения в ряде случаев указанных способов.


1. О решении физических задач в средней школе


1.1 О возможности применения векторных многоугольников для решения физических задач


Применение векторных способов, требующих знания основ тригонометрии (в частности, теорем синусов и косинусов), для решения задач механики в непрофильном 9 классе базовой школы вряд ли эффективно в силу недостаточной математической подготовки учащихся. Эти способы рассчитаны на учащихся классов с углубленным изучением физики (тогда вполне возможно их изучение и в 9 классе) или на старшеклассников: на уроках обобщающего повторения в 11 классе общеобразовательной школы, на курсах по выбору, при подготовке к олимпиадам. Естественно, что эти способы должны широко применяться при решении задач со студентами физических специальностей ВУЗов на практических занятиях по общей физике и в физическом практикуме по решению задач.


1.2 Роль решения задач в процессе обучения физике


В последнее время наблюдается тенденция усиления внимания к решению задач при обучении физике, и им отводится значительная часть курса. Решение задач выступает и как цель, и как метод обучения. Метод решения задач с успехом используется учителями при изложении нового учебного материала и его закреплении, при проведении фронтальных лабораторных работ и особенно физических практикумов.

Физической задачей в учебной практике обычно называют небольшую проблему, которая в общем случае решается с помощью логических умозаключений, математических действий и эксперимента на основе законов и методов физики. Задачи условно подразделяются на стандартные (для решения которых достаточно применить известные на данном уровне знаний формулы и уравнения, выражающие физические закономерности) и нестандартные (для решения которых необходимы не только знание физических законов и формул, но и умение делать не объединенные известными алгоритмами предположения, сопоставления, рассуждения и умозаключения). Вполне естественно, что нестандартные для данного уровня знаний и умений задачи могут быть отнесены к стандартным на другом, более высоком уровне.

Решение и анализ задач позволяют понять и запомнить основные законы и формулы физики, создают представления об их характерных особенностях и границах применения. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения. Наряду с этим при решении задач у школьников воспитывается трудолюбие, пытливость ума, смекалка, самостоятельность в суждениях, интерес к учению, воля и характер, упорство в достижении поставленной цели, формируется особый стиль умственной деятельности, особый метод подхода к физическим явлениям. В процессе решения задач вырабатываются навыки вычисления, работы со справочной литературой, таблицами.

Решение задач служит простым, удобным и эффективным способом проверки и систематизации знаний, умений; позволяет в наиболее рациональной форме проводить повторение ранее изученного материала, расширение и углубление знаний, осуществлять действенную связь преподавания физики с обучением математике, химии, черчению и другим учебным предметам.


1.3 Традиционный способ решения задач кинематики и динамики в школьном курсе физики


Векторная запись многих уравнений физики более полно отображает соответствующие процессы и является более простой и компактной, поэтому она нашла свое применение в современном школьном курсе механики (пример тому - векторная форма записи законов и формул динамики). Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет ее успешное решение. Однако, в процессе решения задач кинематики и динамики используют обычно проекции векторов (координатный способ).

В методической литературе по вузовскому курсу общей физике рекомендуется придерживаться следующего плана решения задачи кинематики:

1) рационально выбрать систему отсчета с указанием начала отсчета времени и обозначить на схематическом чертеже все кинематические характеристики движения (перемещение материальной точки за рассматриваемый промежуток времени, мгновенную скорость в конце и начале перемещения, ускорение и время);

2) записать кинематические законы движения для каждого из движущихся тел в векторной форме;

3) спроецировать векторные величины на координатные оси и проверить, является ли полученная система уравнений полной;

4) используя кинематические связи, геометрические соотношения и специальные условия, данные в задаче, составить недостающие уравнения;

5) решить полученную систему уравнений относительно неизвестных;

6) перевести все заданные величины в одну систему единиц и вычислить искомые величины;

7) проанализировать результат и проверить его размерность.

При решении задач в школьном курсе физики также приемлем данный алгоритм, причем в большинстве случаев пункт 2 опускается, и сразу записываются скалярные уравнения, включающие проекции рассматриваемых в задаче векторных величин.

Для решения задач по динамике общий алгоритм следующий:

1) выяснить, с какими телами взаимодействует движущееся тело, и, сделав схематический чертеж, заменить действие этих тел силами;

2) записать уравнение движения (второй закон Ньютона) в векторной форме;

3) спроецировать векторные величины на координатные оси (значительно облегчает решение задачи рациональный выбор расположения начала координат и направлений координатных осей);

4) если полученная система уравнений не является полной, составить недостающие уравнения, используя третий закон Ньютона, законы трения или законы кинематики;

5) решить полученную систему уравнений относительно неизвестных в общем виде и проверить размерность искомой величины;

6) сделать численные расчеты, проанализировать полученные результаты.

Если в задаче рассматривается движение нескольких тел, необходимо записать второй закон для каждого из них и учесть кинематические и динамические связи между ними (например, равенство ускорений тел, жестко связанных между собой, равенство сил действия и противодействия и т.д.).


Случайные файлы

Файл
93446.rtf
84961.rtf
163640.rtf
CBRR4076.DOC
Khabar.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.