Ответы на экзамен 2 (Билет №20)

Посмотреть архив целиком

9



Билет №20

2.1. Резисторы

Резисторы предназначены для перераспределения и регулирования электричес­кой энергии между элементами схемы. Принцип действия резисторов основан на способности радиоматериалов оказывать сопротивление протекающему через них электрическому току. Особенностью резисторов является то, что электрическая энергия в них превращается в тепло, которое рассеивается в окружающую среду.

Классификация и конструкции резисторов

По назначению дискретные резисторы делят на:

резисторы общего назначения,

прецизионные,

высокочастотные,

высоковольтные,

высокоомные и

специальные.

По постоянству значения сопротивления резисторы подразделяют на:

постоянные,

переменные и

специальные.

Постоянные резисторы имеют фиксированную вели­чину сопротивления, у переменных резисторов предусмотрена возможность из­менения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освеще­ния (фоторезисторы) и т. д.

По виду токопроводящего элемента различают проволочные и непроволочные резисторы. По эксплуатационным характеристикам дискретные резисторы делят на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т. д.

Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным. Величина объем­ного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т. д. и выражается известным соотношением

R = ρl/S, (2.1)

где р — удельное электрическое сопротивление материала;

l — длина резистивного слоя;

S — площадь поперечного сечения резистивного слоя.

В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малое р и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т. д., имеющие большое р.

Для расчета сопротивления тонких пленок пользуются понятием удельного по­верхностного сопротивления ρs, под которым понимают сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина ρs связана с величиной р и легко может быть получена из (2.1), если принять в ней S = δw, где wширина резистивной пленки, δ — толщина резистивной пленки.

Тогда

R = ρs l/w, (2.2)

где ρs = ρ/ δ удельное поверхностное сопротивление, зависящее от толщины пленки δ. Если l=w,ToR = ρs, причем значение сопротивления не зависит от размеров сторон квадрата.

На рис. 2.1 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5.

Сопротивление такого резистора определяется соотношением

R= ρs l/πD

где l — длина резистора (расстояние между контактными колпачками); D — диаметр цилиндрического стержня.

Рис.2.1

Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений (сотни ом). Для увеличения сопротивления резистивную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали (рис. 2.2).

Сопротивление такого резистора определяется соотношением

R = ρsND/t-απ,

где t — шаг спирали; α — ширина канавки (расстояние между соседними витками спирали); N = l/t число витков спирали.


Рис.2.2


На рис. 2.3 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сече­ния с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого ре­зистора определяется соотношением (2.1).

Рис.2.3

Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлени­ем. Снаружи резистор покрывают термостойкой эмалью, спрессовывают пласт­массой или герметизируют металлическим корпусом, закрываемым с торцов ке­рамическими шайбами.

Для гибридных ИМ С выпускают микромодульные резисторы, представляющие собой стержень из стекловолокна с нанесенным на поверхность тонким слоем то­копроводящей композиции. Такие резисторы приклеивают к контактным пло­щадкам подложек токопроводящим клеем — контактолом.

Резисторы гибридных ИМС изготавливают в виде резистивных пленок, наноси­мых на поверхность диэлектрической подложки. Эти резисторы могут быть тон­копленочными (толщина пленки порядка 1 мкм) и толстопленочными (толщина пленки порядка 20 мкм).

Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и за­щищенную слоем SiO2.

Конструкции переменных резисторов гораздо сложнее, чем постоянных. На рис. 2.4 представлена конструкция переменного непроволочного резистора круглой формы.

Этот резистор состоит из подвижной и неподвижной частей. Неподвижная часть представляет собой пластмассовый круглый корпус 2, в котором смонтирован токопроводящий элемент 3, имеющий подковообразную форму. Посредством за­клепок 6 он крепится к круглому корпусу. Эти заклепки соединены с внешними выводами 4. Подвижная часть представляет собой вращающуюся ось, с торцом которой 7 посредством чеканки соединена изоляционная планка 8, на которой смонтирован подвижный контакт 1 (токосъемник), соединенный с внешним вы­водом. Угол поворота оси составляет 270° и ограничивается стопором 5. Суще­ствуют и другие конструкции переменных непроволочных резисторов. Токопроводящий элемент в них представляет собой тонкую графитовую, металлическую, металлооксидную или композиционную пленку.

Переменные резисторы могут иметь разный закон изменения сопротивления в за­висимости от угла поворота оси (рис. 2.5).

У линейных резисторов (типа А) сопротивление зависит от угла поворота линей­но. У логарифмических резисторов (тип Б) сопротивление изменяется по лога­рифмическому закону, а у резисторов типа В — по обратнологарифмическому.

Помимо переменных резисторов с круговым перемещением существуют резисто­ры с прямолинейным перемещением подвижного контакта. В этом случае контакт­ный ползун укрепляется не на поворотной, а на червячной оси.

Выбор типа резистора (постоянного или переменного) для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов. Резистор нельзя рассматривать как элемент, обладающий только активным сопро­тивлением, определяемым его резистивным элементом. Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные па­разитные сопротивления. Эквивалентная схема постоянного резистора пред­ставлена на рис. 2.7.


Рис. 2.7

На схеме RRсопротивление резистивного элемента, Rиз — сопротивление изо­ляции, определяемое свойством защитного покрытия и основания, Rк — сопро­тивление контактов, LRэквивалентная индуктивность резистивного слоя и выводов резистора, CR — эквивалентная емкость резистора, Ск1 и Ск2 — емкости выводов. Активное сопротивление резистора определяется соотношением

R = (RR + Rк)Rиз/ (RR+Rк+Rиз) (2.5)

Сопротивление Rк имеет существенное значение только для низкоомных резис­торов. Сопротивление Rиз практически влияет на общее сопротивление только высокоомных резисторов. Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах ста­новится комплексным. Относительная частотная погрешность определяется соотношением

αR=(Z-R)/R100%, (2.6)

где Zкомплексное сопротивление резистора на частоте со.

На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывают значение обобщенной постоянной времени τmах, ко­торая связана с относительной частотной погрешностью сопротивления.

Частотные свойства непроволочных резисторов значительно лучше, чем прово­лочных.

Параметры резисторов

Параметры резисторов характеризуют эксплуатационные возможности примене­ния конкретного типа резистора в конкретной электрической схеме. Номинальное сопротивление Rном и его допустимое отклонение от номинала ±∆R являются основными параметрами резисторов. Номиналы сопротивлений стан­дартизованы в соответствии с ГОСТ 28884—90. Для резисторов общего назначе­ния ГОСТ предусматривает шесть рядов номинальных сопротивлений: Е6, Е12, Е24, Е48, Е96 и Е192. Цифра указывает количество номинальных значений в дан­ном ряду, которые согласованы с допустимыми отклонениями (табл. 2.1).



Таблица 2.1. Числовые коэффициенты для определения номинальных значений сопротивлений
Е24 Е12 Е6

1, 0 1, 0 1, 0

1 , 1 ------ ----

1,2 1,2 -

1,3

1.5 1,5 1,5
1,6

1.8 1,8 -
2,0

2.2 2,2 2,2
2,4

2,7 2,7

3,0

3.3 3,3 3,3
3,6

3.9 3,9

4,3 - -

4.7 4,7 4,7

5 ,1 _

5.6 5,6

6,2 -

6.8 6,8 6,8
7,5

8,2 8,2
9,1 - -

Номинальные значения сопротивлений определяются числовыми коэффициен­тами, входящими в табл. 2.1, которые умножаются на 10n, где nцелое положи­тельное число. Так, например, числовому коэффициенту 1,0 соответствуют резис­торы с номинальным сопротивлением, равным 10,100,1000 Ом и т. д. Допустимые oтклонения от номинала для ряда Е6 составляют ±20 %, для ряда Е12 — ±10 %, Для ряда Е24 — ±5 %. Это значит, что резистор с сопротивлением 1,5 кОм из ряда Е12 Может обладать сопротивлением в пределах от 1,35 до 1,65 кОм, а тот же резистор из ряда Е6 — в пределах от 1,2 до 1,8 кОм. Числовые коэффициенты, определя­ющие номинальные значения сопротивлений, подобраны так, что образуется не­прерывная шкала сопротивлений, то есть максимально возможное сопротивление какого-либо номинала совпадает (или несколько больше) с минимальной вели­чиной сопротивления соседнего более высокого номинала.

Прецизионные резисторы имеют отклонения от номинала ±2 %; ±1 %; ±0,5 %; ±0,2 %; ±0,1 %; ±0,05 %; ±0,02 % и ±0,01 %.

Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления.

Как уже отмечалось, протекание тока через резистор связано с выделением тепла, которое должно рассеиваться в окружающую среду. Мощность, выделяемая в ре­зисторе в виде тепла, определяется величиной приложенного к нему напряжения U и протекающего тока I и равна

Pвыд = UI. (2.8)

Мощность, рассеиваемая резистором в окружающую среду, пропорциональна раз­ности температур резистора Tr и окружающей среды Тo:

P = (TrTo)/R

Эта мощность зависит от условий охлаждения резистора, определяемых значе­нием теплового сопротивления Rт, которое тем меньше, чем больше поверхность резистора и теплопроводность материала резистора.

При увеличении мощности, выделяемой в резисторе, возрастает его температура Tr, что может привести к выходу резистора из строя. Для того чтобы этого не произошло, необходимо уменьшить Rт, что достигается увеличе­нием размеров резистора. Для каждого типа резистора существует определенная максимальная температура Тмах, превышать которую нельзя. Температура Тк, как следует из вышеизложенного, зависит также от темпера­туры окружающей среды. Если она очень высока, то температура TR может пре­высить максимальную. Чтобы этого не произошло, необходимо уменьшать мощ­ность, выделяемую в резисторе (рис. 2.8, б). Для всех типов резисторов в ТУ оговаривают указанные зависимости мощности от температуры окружающей среды (рис. 2.8, в). Номинальные мощности стандартизованы (ГОСТ 24013-80 и ГОСТ 10318-80 ) и соответствуют ряду: 0,01; 0,025; 0,05; 0,125; 0,25; 0,5; 1; 1,2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500.

Рном

Рис. 2.8


Предельное рабочее напряжение Uпред определяет величину допустимого напряже­ния, которое может быть приложено к резистору. Для резисторов с небольшой величиной сопротивления (сотни ом) эта величина определяется мощностью резистора и рассчитывается по формуле

U =(Pном * Rном)1/2 (2.1

Для остальных резисторов предельное рабочее напряжение определяется конст­рукцией резистора и ограничивается возможностью электрического пробоя, ко­торый, как правило, происходит по поверхности между выводами резистора или между витками спиральной нарезки. Напряжение пробоя зависит от длины рези­стора и давления воздуха.

Температурный коэффициент сопротивления (ТКС) характеризует относитель­ное изменение сопротивления при изменении температуры:

α = ∆R/RsT (2ЛЗ)

Этот коэффициент может быть как положительным, так и отрицательным. Если Резистивная пленка толстая, то она ведет себя как объемное тело, сопротивле­ние которого с ростом температуры возрастает. Если же резистивная пленка тoнкая, то она состоит из отдельных «островков», сопротивление такой пленки с ростом температуры уменьшается, так как улучшается контакт между отдельными «островками». У различных резисторов эта величина лежит в преде­лах ±(7-12)•10-.4

Коэффициент старения β характеризует изменение сопротивления, которое вы­зывается структурными изменениями резистивного элемента за счет процессов окисления, кристаллизации и т. д.

В ТУ обычно указывают относительное изменение сопротивления в процентах за определенное время (1000 или 10 000 ч).

Коэффициент напряжения Ки характеризует влияние приложенного напряжения на сопротивление. В некоторых типах резисторов при высоких напряжениях из­меняется сопротивление. В непроволочных резисторах это обусловлено уменьше­нием контактного сопротивления между отдельными зернами резистивной плен­ки. В проволочных резисторах это обусловлено дополнительным разогревом проволоки при повышенных напряжениях

где R100 — сопротивление резистора при напряжении Uпрeд;

R10— сопротивление резистора при напряжении 0,1 Uпред.

ЭДС шумов резистора. Электроны в резистивном элементе находятся в состоя­нии хаотического теплового движения, в результате которого между любыми точ­ками резистивного элемента возникает случайно изменяющееся электрическое напряжение и между выводами резистора появляется ЭДС тепловых шумов. Теп­ловой шум характеризуется непрерывным, широким и практически равномерным спектром. Величина ЭДС тепловых шумов определяется соотношением

E,=(4KTRf) 1/2, (2.16)

где К=1,38•10-23Дж/ К— постоянная Больцмана;

Т — абсолютная температура, К;

Rсопротивление, Ом;

f— полоса частот, в которой измеряются шумы.

При комнатной температуре (Т= 300 К)

E,=(1/8)*( Rf) 1/2 (2-17)

Если резистор включен на входе высокочувствительного усилителя, то на его выходе будут слышны характерные шумы. Снизить уровень этих шумов можно, лишь уменьшив сопротивление R или температуру Т.

Помимо тепловых шумов существует токовый шум, возникающий при прохожде­нии через резистор тока. Этот шум обусловлен дискретной структурой резистив­ного элемента. При прохождении тока возникают местные перегревы, в результате которых изменяется сопротивление контактов между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) значение сопротивления, что ведет к появлению между выводами резистора ЭДС токовых шумов Ei. Токовый шум, так же как и тепловой, имеет непрерывный спектр, но интенсивность его увеличивается в области низких частот.

Поскольку значения тока, протекающего через резистор, зависит от значения Приложенного напряжения U, то в первом приближении можно считать

Ei=KiU, (2.18)

где Kiкоэффициент, зависящий от конструкции резистора, свойств резистивного слоя и полосы частот. Величина Ki указывается в ТУ и лежит в пределах от 0,2 до 20 мкВ/В. Чем однороднее структура, тем меньше токовый шум. У металлопленочных и углеродистых резисторов величина Ki < 1,5 мкВ/В, у композици­онных поверхностных резисторов Ki < 40 мкВ/В, у композиционных объемных резисторов Ki < 45 мкВ/В. У проволочных резисторов токовый шум отсутствует. Токовый шум измеряется в полосе частот от 60 до 6000 Гц. Его величина значи­тельно превышает величину теплового шума.

Система обозначений и маркировка резисторов

До 1968 года обозначение резисторов состояло из букв, отражающих конструк­тивно-технологические особенности данного типа резистора, например, МЛТ — металлопленочный лакированный теплостойкий.

С 1968 года в соответствии с ГОСТ 13453-68 постоянные резисторы стали обо­значаться буквой С, а переменные — буквами СП. По конструкции токонесущей части резисторы были разделены на шесть групп:

1 непроволочные углеродистые или бороуглеродистые;

2 непроволочные металлопленочные или металлооксидные;

3 непроволочные тонкопленочные композиционные;

4 непроволочные объемные композиционные;

5 проволочные;

6 резисторы для сверхвысоких частот.

Согласно ГОСТ, в обозначении резисторов после букв С или СП стоит цифра, указывающая номер группы, а затем через дефис — номер конкретной конструк­ции резистора. Например, обозначение С2-8 означает: резистор постоянный вто­рой группы, восьмой вариант конструкции.

С 1980 года стала применяться другая система обозначений, также состоящая из трех элементов:

1 первый элемент — буквенный: Р — постоянный резистор, РП — переменный резистор, РН — набор резисторов;

2 второй элемент — цифра: 1 — непроволочный резистор, 2 — проволочный ре-I зистор;

3 третий элемент — цифра, обозначающая разновидность конструкции.

Например, Р2-15 означает: резистор постоянный, проволочный, 15-й вариант кон­струкции.

В конструкторской документации помимо типа резистора указывают номиналь­ную мощность, номинальное сопротивление, допуск на сопротивление и ряд дру­гих параметров.

На принципиальных схемах резисторы изображают в виде прямоугольника с ука­занием сопротивления, мощности и порядкового номера (рис. 2.9).

а б в г д е ж

Рис. 2.9

Мощность указывают наклонными, продольными или поперечными линиями внутри прямоугольника: a — 0,125 Вт; б — 0,25 Вт; в — 0,5 Вт; г — 1 Вт; д — 2 Вт. Изображение переменных резисторов показано на рис. 2.9, е, а подстроечных — на рис. 2.9, ж.

Основные параметры резисторов указывают на его корпусе, но для миниатюрных резисторов не хватает места на корпусе, поэтому ГОСТ 11076—69 предусматри­вает сокращенную буквенно-кодовую маркировку. При такой маркировке вместо запятой в наборе цифр, означающих номинальное значение сопротивления, ста­вят букву, указывающую, в каких единицах выражено сопротивление: R (или Е) — в омах, К — в килоомах, М — в мегаомах, G — в гигаомах, Т — в тераомах. При этом ноль, стоящий до или после запятой, не ставят. После указания величины номинального сопротивления ставят букву, обозначающую допуск, в соответ­ствии с табл. 2.2.

В последние годы в соответствии с СТ СЭВ 1810—79 стала применяться между­народная система обозначений в соответствии с табл. 2.3.

Например, резистор с сопротивлением 0,47 кОм и допуском ±20 % маркируют К47В или К47М.

Таблица 2.2. Маркировка резисторов по ГОСТ 1107669

Допустимое

отклонение, % ±0,1 ±0,2 ±0,5 ±1 ±2 ±5 ±10 ±20 ±30
Обозначение Ж УД РЛИС ВФ

Таблица 2.3. Маркировка резисторов по СГ СЭВ 181079

Допустимое отклонение, % ±0,001 ±0,002 ±0,005 ±0,01 ±0,02 ±0,05

Обозначение Е L R P U X


Допустимое отклонение, % ±0,1 ±0,25 ±0,5 ±1 ±2 ±5 ±10 ±20 ±30

Обозначение В С D F GIKMN


Помимо буквенно-цифровой применяется цветовая индексация номинального сопротивления и допуска на корпусе резистора (ГОСТ 28883—90). Вблизи одного из торцов корпуса наносят 4 цветных полоски: первая обозначает первую циф­ру номинала, вторая — вторую цифру номинала, третья — множитель; четвертая — величину допуска, цвет полосок стандартизован.

Конструктивно-технологические разновидности резисторов

В зависимости от конкретных условий работы в РЭА применяются различные типы резисторов.

Непроволочные тонкослойные постоянные резисторы. У резисторов группы С1 токопроводящий слой представляет собой пленку пиролитического углерода, а у резисторов группы С2 — пленку сплава металла или оксида металла. Эти резис­торы являются резисторами широкого применения с допусками ±5, ±10 или ±20 % и мощностью от 0,125 до 2 Вт. Помимо резисторов С1 и С2 к этой категории резис­торов относятся резисторы типов МЛТ, МТ и ВС.

Поскольку металл обладает более высокой теплостойкостью, чем углерод, то рези­сторы С2 при равной мощности имеют меньшие, чем С1, габариты. Резисторы С2 обладают более высокой стабильностью при циклических изменениях темпера­туры. Недостатком металлопленочных резисторов является небольшая стойкость к импульсной нагрузке и меньший частотный диапазон, чем у углеродистых. Объясняется это тем, что токопроводящий слой у металлопленочных резисторов толще, чем у углеродистых резисторов, поэтому, увеличивается паразитная емкость между витками резистивной спирали. На основе резисторов С2 создаются также прецизионные резисторы с допусками ±(0,1-1) %. Прецизионные резисто­ры имеют большие габариты, чем резисторы общего применения. Это облегчает тепловые режимы и повышает стабильность свойств проводящего слоя.

Композиционные резисторы. У этих резисторов токопроводящий материал получа­ют путем смешивания проводящего компонента (графита или сажи) со связующими компонентами, наполнителем, пластификатором и отвердителем. В резисто­рах группы СЗ полученную композицию наносят на поверхность изоляционного основания, а в резисторах группы С4 спрессовывают в виде объемного цилиндра или параллелепипеда. В зависимости от состава композиционные материалы име­ют очень широкий диапазон удельных сопротивлений. Объемные композицион­ные резисторы С4 имеют прямоугольную форму и предназначены для установки на печатных платах. Они обладают высокой теплостойкостью (до 350 °С) и име­ют небольшие габариты. Недостатком композиционных резисторов является вы­сокий уровень токовых шумов, что объясняется крупнозернистой структурой про­водящего материала.

Проволочные постоянные резисторы. Для изготовления этих резисторов исполь­зуют провод из специальных сплавов, имеющих высокое удельное сопротивление, Хорошую теплостойкость и малый температурный коэффициент сопротивления. Эти резисторы обладают очень высокой допустимой мощностью рассеивания (десятки ватт) при относительно небольших размерах, высокой точностью и хорошей температурной стабильностью. Так как резисторы изготавливают путем намотки провода на каркас, то они имеют большую индуктивность и собствен­ную емкость. Для уменьшения индуктивности применяют бифилярную намотку, при которой обмотку резистора выполняют сдвоенным проводом, благодаря чему поля расположенных рядом витков направлены навстречу друг другу и вычита­ются. Уменьшение индуктивности достигается также путем намотки на плоский каркас. Недостатком бифилярной намотки является большая собственная емкость. Для получения малых индуктивности и емкости применяют разбивку обмотки на секции, в каждой из которых поочередно меняется направление намотки. Про­волочные резисторы значительно дороже тонкопленочных, поэтому применяют их в тех случаях, когда характеристики тонкопленочных резисторов не удовлет­воряют предъявляемым требованиям.

Высокочастотные резисторы и резисторы СВЧ. Эти резисторы обладают неболь­шими собственными индуктивностью и емкостью, что обеспечивается отсутстви­ем спиральной нарезки, но при этом сопротивление не превышает 200-300 Ом. Однако это не является недостатком, так как на СВЧ высокие номиналы сопро­тивлений не применяют. В ряде случаев высокочастотные резисторы изготавли­вают без проволочных выводов и эмалевого покрытия, что уменьшает паразит­ную индуктивность и шунтирующее действие диэлектрика. На сверхвысоких частотах применяют резисторы группы С6, способные работать на частотах до 10 ГГц. К категории высокочастотных относятся также резисторы типов: С2-11, С2-34, МОН (металлоокисидные незащищенные) и МОУ (металлоокисидные ультравысокочастотные). На высоких частотах находят применение, кроме того, микропроволочные малогабаритные резисторы типа С5-32 Т, имеющие длину 6 мм, диаметр 2,6 мм и паразитную индуктивность не более 0,1 мкГн. Эти резис­торы имеют мощность 0,125 Вт и номинальное сопротивление от 0,24 до 300 Ом с точностью 0,5; 1; 2 и 5 %.

С