Прогнозирование емкости и коньюктуры рынка (101912)

Посмотреть архив целиком

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Московский Государственный Текстильный Университет

имени А. Н. Косыгина


кафедра экономики




ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ (вариант №23, 1 и 2 часть)

По курсу:

«Прогнозирование емкости и коньюктуры рынка».





Выполнил: студент группы 47-03

Котляр Владимир

Проверил:

Станкевич А.В.









Москва – 2007


Задание № 1


Период

1

2

3

4

5

6

7

8

9

10

Уровень ряда

16,7

17,2

17,5

19,4

16,8

19,3

16,5

19,4

18,1

16,1


На основании данных о еженедельном спросе на текстильную продукцию:

  1. построить график (рис. 1) и визуально оценить наличие в нем тенденции;

  2. проверить наличие или отсутствие в исходном временном ряде тенденции с помощью коэффициента Кендэла;

  3. если исходный ряд является стационарным, то рассчитать точечный и интервальный прогноз с периодом упреждения прогноза, равным 1.


Рис. 1. Еженедельный спрос на текстильную продукцию


При визуальной оценке наличия в графике тенденции можно отметить сильную его приближенность к полиному высокого порядка (шестой степени), использование которого нецелесообразно, поскольку полученные таким образом аппроксимирующие функции будут отражать случайные отклонения, что противоречит смыслу тенденции.

Таким образом, в результате визуальной оценки можно сделать вывод об отсутствии в графике тенденции.

2).


 

t

Yt

Pt

 

1

16,7

-

 

2

17,2

1

 

3

17,5

2

 

4

19,4

3

 

5

16,8

1

 

6

19,3

4

 

7

16,5

0

 

8

19,4

6

 

9

18,1

5

 

10

16,1

0

итого

 

177

22


Определим расчетное значение коэффициента Кендэла (р):


р =

4  р

1,

n  (n – 1)


где n – количество уровней во временном ряде.


р =

4  22

1 = -0,0222

10  (10 – 1)


Коэффициент Кендэла является случайной величиной, соответствует нормальному распределению и изменяется от -1 до +1. Теоретическими характеристиками коэффициента Кендэла являются математическое ожидание, которое равно нулю (М = 0) и дисперсия, рассчитываемая по формуле:


2 =

2  (2  n + 5)

.

9  n  (n – 1)


2 =

2  (2  10 + 5)

=

50

= 0,062

9  10  (10 – 1)

810


Если сопоставить расчетное и теоретическое значение коэффициента Кендэла, то может возникнуть три ситуации.

1) (0 – td ) < р < (0 + td ),

где td – коэффициент доверия.

Данный вариант означает, что с вероятностью td во временном ряде нет тренда.

2) р < (0 – td )

Данный вариант означает, что с выбранной вероятностью в ряде имеет место убывающая тенденция.

3) р > (0 + td )

Данный вариант означает, что с выбранной вероятностью в ряде имеет место возрастающая тенденция.

При выбранной вероятности 0,95 (95%) коэффициент доверия td = 1,96.

(0 – 1,96  ) < р < (0 + 1,96  )

- 0,488 < - 0,0222 < + 0,488

Таким образом, с вероятностью 95% можно говорить об отсутствии тенденции среднего уровня (тренда) во временном ряде.

3)

t

Yt

Yt-Yсреднее

(Yt-Yсреднее)^2

1

16,7

-1

1

2

17,2

-0,5

0,25

3

17,5

-0,2

0,04

4

19,4

1,7

2,89

5

16,8

-0,9

0,81

6

19,3

1,6

2,56

7

16,5

-1,2

1,44

8

19,4

1,7

2,89

9

18,1

0,4

0,16

10

16,1

-1,6

2,56

 

177

 

14,6


Так как во временном ряде нет тенденции, то данный временной ряд является стационарным процессом.

Поскольку в ряде отсутствует тенденция, то точечный прогноз определяется как средняя арифметическая простая:


==

yt

,

n


где n – количество уровней ряда.


==

177

= 17,7

10


Интервальный прогноз:

=+ t ,

где t – табличное значение по распределению Стьюдента с числом степеней свободы

К = n – 1 и уровнем значимости а; – дисперсия временного ряда.


=

(yt)2

=

14,6

= 1,46

n

10


При заданном уровне значимости a = 0,05 ( = 1 – а = 1 – 0,05 = 0,95) и числе степеней свободы К = 10 – 1 = 9, определим табличное значение t-критерия Стьюдента (см. Приложение 1). Табличное значение критерия Стьюдента t = 2,262.

Определим интервальный прогноз.

=17,7 – 2,262 = + 14,8

=24,16 + 2,262 = + 20,6

Таким образом, с вероятностью 0,95 (95%) можно говорить о том, что на 11-ю неделю уровень ряда будет находиться в промежутке между 14,8 и 20,6.


Задание № 2


Период

1

2

3

4

5

6

7

8

9

10

11

12

Уровень ряда

11,0

10,8

10,7

10,5

11,7

12,2

12,5

12,1

13,0

13,7

13,0

14,0


По данным о ежедневном обороте магазина «Ткани для дома»:

  1. построить график исходного временного ряда и визуально оценить наличие в нем тенденции и возможный ее тип. Сгладить исходный временной ряд с помощью скользящей средней (шаг сглаживания равен 3). Построить график сглаженного ряда и визуально оценить возможный в нем тип тенденции. Оба графика построить на одном чертеже (рис. 2). Результаты обеих визуальных оценок отметить в отчете;

  2. оценить с помощью метода Фостера – Стюарта и коэффициента Кендела наличие тенденции (в среднем и дисперсии) в исходном временном ряде. Сравнить полученные оценки с оценками, полученными при выполнении пункта 1, и сделать окончательный свой вывод. Результаты вывода отметить в отчете;

  3. по исходным данным методом усреднения по левой и правой половине определить параметры линейного тренда = а0 + а1t. Построить график исходного временного ряда и полученного линейного тренда на одном чертеже (рис. 3). Оценить визуально, отражает ли линейный тренд тенденцию временного ряда? Свой вывод отразить в отчете;

  4. по исходным данным методом МНК рассчитать параметры линейного тренда = а0 + а1t. Кроме того, выбрать нелинейную модель, которая, по вашему мнению, может хорошо описать тенденцию исходного временного ряда. Рассчитать параметры выбранной вами нелинейной трендовой модели. Построить три графика (исходный временной ряд, линейная и выбранная вами нелинейная трендовая модели) на одном чертеже (рис. 4). Определить аналитическим способом, какая из двух трендовых моделей (линейная и нелинейная) наилучшим образом аппроксимирует исходный временной ряд;


Случайные файлы

Файл
113498.rtf
71954-1.rtf
9821-1.rtf
11694.rtf
9542-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.