Использование обобщений при обучении математике в средней школе (86323)

Посмотреть архив целиком











«Использование обобщений при обучении математике в средней школе»


СОДЕРЖАНИЕ


Введение

Обобщение как метод научного познания в обучении математике

Методические особенности использования обобщений в изучении теоретического материала

Обобщение определений математических понятий и теорем

Подведение под понятие

Расширенные определения понятий

Расширенные теоремы-свойства понятий

Роль расширенных определений и теорем в процессе обучения

Возможные обобщения теоремы

Обобщения при решении задач на уроках математики

Обобщение в преподавании математики

Взаимосвязь обобщения и анализа

Обобщение как пример варьирования при поиске решения задач

Структурное представление технологии формирования обобщенного подхода к решению математических задач

Обобщение как эвристический прием решения нестандартных задач

Урок обобщения и систематизации знаний

Заключение

Литература


ВВЕДЕНИЕ


Известно, что математика оперирует определенными «идеальными» объектами. Однако все эти математические объекты отражают свойства материальных предметов и законы материального мира; их идеальный характер означает просто отвлечение от несущественных в момент рассмотрения свойств материальных вещей, благодаря чему исследуемые свойства выступают в наиболее общем и чистом виде. Поэтому все математические понятия и положения представляют собой знание наиболее глубоких и общих свойств реальной действительности.

В процессе познания законов природы математик пользуется особыми математическими средствами, научными методами исследования. В процессе обучения учащиеся также ставятся в положение первооткрывателей математических истин (самостоятельно или с помощью учителя) и поэтому научные методы математического исследования в то же время служат и методами учебной работы учащихся.

Основными методами математического исследования являются:

  1. наблюдение и опыт;

  2. сравнение;

  3. анализ и синтез;

  4. обобщение и специализация;

  5. абстрагирование и конкретизация.

В данной курсовой работе будет изучен такой метод математического исследования, как обобщение, и выявлено его место и значение в преподавании, так как процесс изучения математики в школе неотделим от процесса ее преподавания.


ОБОБЩЕНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ В ОБУЧЕНИИ МАТЕМАТИКЕ.


Г.И. Саранцев по характеру учебно-познавательной деятельности и организации содержания материала выделяет следующие методы обучения математике:

  • индуктивно-репродуктивный (учитель создает такую ситуацию, в которой ученик воспроизводит понятие или теорему в процессе рассмотрения частных случаев. Например, посредством решения задач на выделение ситуаций, удовлетворяющих условию теоремы, или решение задачи (изучение теоремы) осуществляется по плану, предложенному учителем);

  • индуктивно-эвристический (метод предполагает самостоятельное открытие фактов в процессе рассмотрения частных случаев. Например, упражнения на умножение степеней с одинаковым основанием приводят к открытию определения произведения степеней с одинаковыми основаниями);

  • индуктивно-исследовательский (метод заключается в проведении исследований различных феноменов посредством изучения их конкретных проявлений. Например, изучая свойства четырехугольников в зависимости от наличия у них осей симметрии, приходим к таким видам четырехугольника, как прямоугольник, ромб, квадрат);

  • дедуктивно-репродуктивный (метод предполагает воспроизведение частных случаев в процессе решения задач, где используется общее положение. Например, теорема о сумме смежных углов воспроизводится посредством решения задач на нахождение одного из смежных углов, если задан другой);

  • дедуктивно-эвристический (метод заключается в открытии частностей какого-либо факта при рассмотрении общего случая. Примером проявления этого метода может служить решение любой конкретной задачи на применение какой-либо теоремы);

  • дедуктивно-исследовательский (Сутью этого метода обучения является организация исследований посредством дедуктивного развития учебного материала. Например, аксиоматический метод, метод моделирования, решение задач на применение теорем);

  • обобщенно-репродуктивный (цель достигается путем воспроизведения изученных фактов. Например, усвоение векторного метода предполагает овладение действиями перевода геометрического языка на векторный и обратно, сложения и вычитания векторов, представления вектора в виде суммы, разности векторов и т. п.);

  • обобщенно-эвристический (метод предполагает создание учителем такой ситуации, в которой ученик самостоятельно (или с небольшой помощью учителя) приходит к обобщению. Например, измеряя стороны и углы произвольных треугольников, ученики могут открыть следующую зависимость между углами и сторонами треугольника: против большей стороны треугольника лежит больший угол и наоборот);

  • обобщенно-исследовательский (метод предполагает наличие в учебном материале ситуаций, исследование которых приводит к обобщенному знанию. Например, рассматривая различные случаи расположения вписанных в окружность углов, можно прийти к известной теореме о том, что вписанный угол измеряется половиной дуги, на которую он опирается).


МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ ОБОБЩЕНИЙ В ИЗУЧЕНИИ ТЕОРЕТИЧЕСКОГО МАТЕРИАЛА


Обобщение определений математических понятий и теорем


Подведение под понятие

Важной особенностью математики как дедуктивной системы является то, что все понятия, за исключением основных, вводятся посредством определений. В определениях указываются некоторые специфические свойства понятий, называемые часто их признаками, по которым можно определить, принадлежит ли данный объект или отношение к объему этого понятия. Остальные свойства определяемых понятий устанавливаются в рассматриваемых о них теоремах. Одни из них дают достаточные условия существования данного понятия, а другие – необходимые условия существования данного понятия. Признаки понятий, выраженные посредством определений и теорем, обычно представляют собой различные простые высказывания, соединенные различными логическими операциями (связками). В каждом определении и в условии каждой теоремы признаки, дающие достаточные условия существования соответственного понятия, связаны связкой «и», т. е. образуют конъюнкцию. По этой причине, чтобы установить, принадлежит ли данный объект (или отношение) множеству объектов (или отношений), составляющих объем соответственного понятия, достаточно показать, что все его признаки имеют место в определении или условии одной из этих теорем. Деятельность, посредством которой доказывается, что определенный объект или отношение принадлежит соответственно множеству объектов или отношений, составляющих объем данного понятия, называется «подведением под понятие». В процессе решения задач почти всегда приходится устанавливать, что определенные объекты или отношения принадлежат объемам соответственных понятий, чтобы было возможно потом применить к ним теоремы, представляющие собой необходимые условия существования этих понятий. Именно этим способом, по известным свойствам данных объектов или отношений устанавливаются их другие, новые свойства.


Расширенные определения понятий

Если о некотором математическом понятии известно одно или больше определений и рассмотрены теоремы, дающие достаточные условия его существования, то отдельные конъюнкции признаков в этих определениях и теоремах образуют дизъюнкцию. Поэтому «подведение под понятие» можно алгоритмизировать. Для этой цели достаточно отдельные конъюнкции признаков в определениях и соответственных теоремах связать между собой в сложном высказывании посредством применения связки «или». Теперь достаточно проверить наличие каждой конъюнкции признаков, пока установится хотя бы одна. Такое сложное высказывание, представляющее собой дизъюнкцию признаков некоторого понятия, выраженных в отдельных определениях и теоремах, дающих достаточные условия существования этого понятия, называют расширенным определением существующего понятия. Так как в процессе обучения сразу не рассматриваются все теоремы, дающие достаточные условия существования соответственных понятий, их расширенные определения усложняются постепенно.

Приведем пример расширенного определения параллелограмма, которое представляет собой определение типа «от рода к виду».

Четырехугольник - параллелограмм , если:


  1. и , или

  2. и , или

  3. и , или

  4. и и - точка пересечения диагоналей и .

Короче это расширенное определение можно записать так:


.


Это высказывание будет истинным в силу закона логики:


.


Если обозначить через предикат, выражающий свойство четырехугольника «быть параллелограммом», то получим логическую функцию, заданную на множестве , составляющем объем родового понятия «четырехугольник». Каждый из признаков понятия «параллелограмм» можно также рассматривать как логическую функцию, заданную на том же множестве , так как каждым признаком задается свойство определенного подмножества множества .

Если обозначить эти логические функции через , , , , , то определение понятия «параллелограмм» можно записать в виде:


Случайные файлы

Файл
17255.rtf
1278.rtf
literature.doc
148278.rtf
30311.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.