Формирование умения решения квадратных уравнений в 8 классе (86227)

Посмотреть архив целиком

ГОУ СПО «Кунгурское педагогическое училище»








Формирование умения решения квадратных уравнений в 8 классе






Курсовая работа

по методике математики

Исламовой Энзиры

Таузифовны

Специальность: 050201

Математика

группа: М - 41

отделение: очное

руководитель:

Янкина Л.Г.

преподаватель

математики

Защита состоялась:

Отметка:


2007


Содержание


Введение 3

Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе

    1. Из истории возникновения квадратных уравнений 6

    2. Основные направления изучения линий уравнений в школьном курсе алгебры 12

    3. Методика изучения квадратных уравнений 15

Глава 2. Методико-педагогические основы обучения решению квадратных уравнений

    1. Урок – лекция по теме «Формула корней квадратного уравнения с четным вторым коэффициентом» 23

    2. Урок – практикум по теме «Квадратные уравнения» 28

    3. Обобщающий урок по теме «Квадратные уравнения» в форме игры «Звездный час» 32

Заключение 37

Список литературы 38

Приложение 39


Введение


Сухие строки уравнений –

В них сила разума влилась.

В них объяснение явлений,

Вещей разгаданная связь.

Л.М.Фридман [10,268].


Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений. При изучении любой темы уравнения могут быть использованы как эффективное средство закрепления, углубления, повторения и расширения теоретических знаний, для развития творческой математической деятельности учащихся.[10,241].

Автором данной работы выбрана тема «Формирование умения решения квадратных уравнений в 8 классе», так как она актуальна в современном мире; это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.

Для этой темы характерна большая глубина изложения и богатство устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений. К изучению темы «Квадратные уравнения» учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений. В значительной мере именно на материале данной темы осуществляется синтез материала, относящегося к уравнениям.

Исходя из вышесказанного, автор, выбирая тему курсовой работы, руководствовался ее значимостью и сложностью при обучении учащихся решению квадратных уравнений разного вида.

Цель работы: формирование представлений о работе над квадратными уравнениями на уроках математики. Исходя из данной цели, были поставлены следующие задачи:

  • изучить научно-методическую литературу, касающуюся изучению уравнений;

  • проанализировать школьные учебники и выделить в них место уравнений.

  • разработать уроки по данной теме.

Для решения вышеуказанных задач были изучены следующие литературные источники:

1) Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. – 2-е изд. – М.: Просвещение, 2003. – 287 с.

2) Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. – 10-е изд. – М.: Просвещение, 2003. – 255с.

3) Мордкович А.Г.. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. – М.: Просвещение, 2004. – 287с.

4) Бекаревич А.Б. Уравнения в школьном курсе математики. – М., 2000. – 241с.

5) Глейзер Г.И. История математики в школе VIIVIII классы. – М., 1982.

6) Колягин Ю.М. Методика преподавания математике в средней школе. Частные методики. – М.: Просвещение, 2002.

7) Маркушевич Л.А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы // Математика в школе. – 2001. - №1. – с.15

8) Методика и технология обучения математике. Курс лекций: пособие для вузов / под ред. Н.Л.Стефановой, Н.С. Подходовой. – М.: Дрофа, 2005. – 416 с.

9) Мишин В.И. Методика преподавания математики в средней школе. – М.,1999.- 398с.

10) Оганесян В.А. Методика преподавания математики в средней школе. – М.: Просвещение, 2003. – 368 с.

Проанализировав некоторые источники, можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе.

Объект исследования работы: процесс обучения математике.

Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса.

Контингент: учащиеся 8-го класса.


Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе


    1. Из истории возникновения квадратных уравнений


Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.


Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение — 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 - х. Разность между ними 2х. Отсюда уравнение:

(10+x)(10—x) =96,

или же

100x2 = 96.

x2 - 4 = 0

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

y (20-y)=96

y2 - 20y+96=0

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.


Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:


Случайные файлы

Файл
84765.rtf
154780.rtf
168063.rtf
90463.rtf
7611-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.