Предельные точки (86188)

Посмотреть архив целиком

Федеральное агентство по образованию


Кафедра общей математики










Курсовая работа по математическому анализу на тему:

«Предельные точки»















2008


Содержание:


Введение

  1. Эквивалентные множества. Счетные и несчетные множества. Мощность континуума

  2. Замкнутые и открытые множества

  3. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве

Заключение

Используемая литература



Введение


Начинать курсовую работу по этой теме, на мой взгляд, стоит с определения понятия множество, так как оно является одним из основных понятий математического анализа.

Множество − это совокупность объектов любой природы. Определение множества есть описательное определение с помощью слов разговорного языка.

Объекты, образующие в своей совокупности данное множество, называются его элементами или точками. Для обозначения различных множеств чаще всего используются заглавные (прописные) буквы латинского алфавита, а для обозначения элементов этих множеств – малые (строчные) буквы.

Два множества называются равными, если они состоят из одних и тех же элементов. Это записывают так: или .

Если элемент a принадлежит множеству А, то пишут: , если же не принадлежит, то записывают так: .

Если все элементы множества принадлежат множеству , то называется подмножеством множества , и пишут: .

Очевидно, что если и , то .

Обычно, удобнее рассматривать все множества, участвующие в каком-либо рассуждении, как подмножества некоторого фиксированного множества , которое называют универсальным.

Для того чтобы с определенностью говорить о каком-либо множестве , нужен четкий критерий, правило, условие, свойство, которое дает возможность установить, какие именно элементы входят в . Если обозначить это условие через , то тот факт, что условие порождает множество , записывают следующим образом: .

Может оказаться так, что для некоторого свойства во всем множестве вообще нет элементов, которые удовлетворяют данному условию. В таком случае говорят, что это пустое множество, оно не содержит ни одного элемента.

Для краткости вместо некоторых часто употребляемых выражений общепринято использовать особые математические знаки, называемые кванторами:




Множество называется объединением (или суммой) множеств и ,если оно состоит из тех и только тех элементов, которые принадлежат хотя бы одному из указанных множеств.

Обозначается это так:


.


Свойства:


.


Пересечением множеств и называется множество , состоящее из всех элементов, принадлежащих одновременно и , и , т.е. элементов, общих для этих множеств. Доказать равенство двух множеств - это значит доказать, что всякий элемент , принадлежащих правой части равенства, принадлежит и левой, и наоборот.

Для произвольной совокупности множеств , где пробегает все элементы некоторого множества , пишут


,


если есть объединение всех множеств

Аналогично, , если − пересечение всех множеств .

Выше я привела примеры некоторых операций над множествами. Существуют также такие операции, как разность двух множеств, Декартовое произведение множеств, отображение множеств, обратные функции, взаимно однозначные соответствия и пр.



1. Эквивалентные множества. Счетные и несчетные множества. Мощность континуума


Понятие взаимно однозначного соответствия играет большую роль при перенесении представления о «количестве» элементов множества с конечных множеств на бесконечные. Это необходимо, поскольку мы постоянно имеем дело с бесконечными множествами. Вот некоторые из них. множество всех чисел натурального ряда; множество всех целых чисел (положительные, отрицательные целые числа и нуль).

О количестве точек множества можно говорить только для конечных множеств, а для бесконечных − нельзя. В этом случае говорят о мощности множества. Таким образом, мощность множества − это понятие, которое обобщает понятие «количество элементов» на случай бесконечных множеств. Если же множество конечно, то термины «мощность множества» и «количество элементов множества» − синонимы.

Множества и называются эквивалентными или равномощными, если между ними можно установить взаимно однозначное соответствие. Это обозначается так: ~. Свойства: ~; ~ ~;~,~ ~.

Если и эквивалентны, то говорят, что они имеют одинаковую мощность.

Можно привести важный пример эквивалентности бесконечных множеств.

Утверждение 1: Множество (натуральных чисел) и множество (рациональных чисел, т.е. всех дробей ) эквивалентны.

Доказательство: достаточно показать, как присвоить собственный номер каждому рациональному числу. Для этого представим каждое рациональное число в виде несократимой дроби:



Такое представление единственно. Высотой рационального числа назовем величину . Эта высота сама является натуральным числом, т.е. принимает значения 1,2,3,… и т.д. При фиксированном существует не более различных несократимых дробей, т.к. тогда знаменатель может принимать значения 1,2,…,, а для данного числитель числа может принимать не более двух значений: . Таким образом, с данной высотой число рациональных чисел не более .

Будем нумеровать дроби в порядке возрастания ; при фиксированном в порядке возрастания , а при фиксированных и - в порядке возрастания . Тогда получим:



и т.д. Ясно, что каждое рациональное число когда-нибудь получит свой порядковый номер. При этом все номера 1,2,3,… будут использованы и разные рациональные числа получат разные номера. Тем самым построено взаимно однозначное соответствие множеств и .

Всякое множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Исходя из этого определения, можно упомянуть о некоторых теоремах:

  1. Из всякого бесконечного множества можно выделить счетное подмножество.

  2. Всякое бесконечное подмножество счетного множества тоже счетно.

  3. Сумма конечного числа счетных множеств – тоже счетное множество.

  4. Сумма счетного множества счетных множеств – тоже счетное множество.

  5. Сумма конечного или счетного множества множеств, каждое из которых конечно или счетно, есть конечное или счетное множество.

  6. Множество всех рациональных чисел счетно.

  7. Множество всех алгебраических полиномов с рациональными коэффициентами счетно.

Утверждение 2. Всякое непустое подмножество счетного множества конечно или счетно.

Доказательство: занумеруем элементы счетного множества и перенумеруем затем элементы подмножества в порядке возрастания этих номеров. Если мы исчерпаем все подмножество на конечном шаге, то оно конечно, иначе - счетно.

Утверждение 3. Сумма конечного или счетного числа счетных множеств счетна.

Доказательство. Проведем нумерацию элементов суммы множеств по схеме:



За шагов будут заведомо занумерованы все элементы .

Стоит обратить внимание, что бесконечные множества, рассмотренные в утверждениях 1-3, оказались равномощными, точнее счетными. Но не все бесконечные множества равномощны. Имеет место следующая теорема.

Теорема 1: совокупность всех подмножеств любого множества X сама образует множество, не эквивалентное X. Эта теорема (точнее, ее модификация ~) была доказана Г. Кантором (1845-1918) в 1874 г.

Доказательство: (от противного). Пусть ~. Значит имеется биективное соответствие Тогда, если , то ему однозначно соответствует . Теперь всякую точку назовем правильной, если она принадлежит своему образу, т.е., если . В противном случае эту точку будем называть особой точкой. Назовем дефектом множество , состоящее из всех особых точек . Тогда ясно, что является элементом множества . В силу наличия взаимно однозначного соответствия между и найдется такая точка . При этом сама точка обязана быть либо правильной, либо особой. Но первое не имеет места, поскольку тогда бы по определению правильной точки она принадлежала бы , что невозможно, т. к. ко множеству по построению отнесены только особые точки. Но второй случай приводит к противоречию, т. к. тогда по определению особой точки , а с другой стороны, тогда точка как особая точка должна войти в дефект по его построению.

Таким образом, предположение о существовании биекции между и во всех случаях ведет к противоречию, т. е. и не эквивалентны.

Следует отметить, что как результат, так и доказательство теоремы справедливы в том случае, когда есть пустое множество. Тогда мощность множества равна 0, а множество состоит ровно из одного элемента, т. е. самого и поэтому мощность равна .

Бесконечное множество называется несчетным, если оно не эквивалентно . По теореме 1 несчетным множеством, например, является множество подмножеств , а значит, множество последовательностей, составленных из 0 и 1.

Прием, с помощью которого доказана теорема 1, называется канторов диагональный процесс. Впервые он был применен Кантором в 1874 г. При доказательстве несчетности точек на отрезке. Этот процесс называется диагональным, потому что если в теореме 1 в качестве взять натуральный ряд , то получится, что множество подмножеств, т. е. совокупность последовательностей, составленных из нулей и единиц, не эквивалентно .






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.