Представление функции рядом Фурье (86050)

Посмотреть архив целиком

Федеральное агентство по образованию РФ.

Государственное образовательное учреждение высшего профессионального образования

Забайкальский государственный гуманитарно-педагогический университет им. Н. Г. Чернышевского.

Физико-математический факультет кафедра фундаментальной и прикладной математики, теории и методики обучения математике.







Курсовая работа

«Ряды Фурье»



Выполнил: Студент 131 группы

Гаврутенко А.В.

Научный руководитель: профессор кафедры фундаментальной и прикладной математики,

теории и методики обучения математике

Менчер А.Э.






Чита 2009


Оглавление


Введение

Определение коэффициентов по методу Эйлера-Фурье

Ортогональные системы функций

Интеграл Дирихле Принцип локализаци

Представление функций рядом Фурье

Случай непериодической функции

Случай произвольного промежутка

Случай четных и нечетных функций

Примеры разложения функций в ряд Фурье

Список использованной литературы



Введение


В науке и технике часто приходиться иметь дело с периодическими явлениями, т. е. такими, которые воспроизводятся в прежнем виде через определенный промежуток времени Т, который называется периодом. Например, движение паровой машины повторяется, после того как пройдет полный цикл. Различные величины, связанные с периодическим явлением, по истечении периода Т возвращаются к своим прежним значениям и представляют собой периодические функции от времени t с периодом Т.



Если не считать постоянной, то простейшей периодической функцией является синусоидальная величина: , где есть частота, связанная с периодом Т соотношением:


.


Из подобных простейших периодических функций могут быть составлены и более сложные. Ясно, что составляющие синусоидальные величины должны быть разных частот, иначе их сложение не дает ничего нового, а вновь приводит к синусоидальной величине, причем той же частоты. Если же сложить величины вида:


(1)


которые имеют разные частоты


,


то получится периодическая функция, но уже существенно отличающаяся от величин, входящих в сумму.

Рассмотрим для примера сложение трех синусоидальных величин:




На рисунке мы видим, что график функции полученной в результате сложения трех синусоидальных величин (показан сплошной линией) уже значительно отличается от синусоиды. В большей степени это имеет место для суммы бесконечного ряда величин вида (1).

Теперь возникает обратный вопрос: можно ли данную периодическую функцию представить в виде суммы конечного или бесконечного множества синусоидальных величин вида (1).

Как будет показано ниже, на этот вопрос можно ответить удовлетворительно, но только лишь используя бесконечную последовательность величин вида (1). Для функций некоторого класса имеет место разложение в «тригонометрический ряд»:



(2)


С геометрической точки зрения это означает, что график периодической функции получается путем наложения ряда синусоид. Если же каждую синусоидальную величину истолковать механически как представляющую гармонические колебательные явления, то можно сказать, что здесь сложное колебание разлагается на отдельные гармонические колебания. Исходя из этого, отдельные синусоидальные величины, входящие в состав разложения (2), называют гармоническими составляющими функции или просто ее первой, второй и т. д. гармониками. Сам же процесс разложения периодической функции на гармоники носит название гармонического анализа.

Если за независимую переменную выбрать


,


то получиться функция, зависящая от х, так же периодическая, но уже со стандартным периодом Разложение (2) в этом случаи примет вид:


(3)


Теперь развернув члены этого ряда по формуле синуса суммы и обозначив



мы придем к окончательной форме тригонометрического разложения:


(4)


В данном разложении функция от угла х, имеющая период разложена по косинусам и синусам углов, кратных х.

Мы пришли к разложению функции в тригонометрический ряд, отправляясь от периодических, колебательных явлений и связанных с ними величин. Подобные разложения часто оказываются полезными и при исследовании функций, заданных в определенном конечном промежутке и вовсе не порожденных никакими колебательными явлениями.

Определение коэффициентов по методу Эйлера-Фурье.

В предыдущем параграфе было сказано, что существует ряд функций, которые можно представить в виде бесконечного тригонометрического ряда. Для того, что бы установить возможность разложения некоторой функции , имеющей период в тригонометрический ряд вида:


(4)


нужно иметь набор коэффициентов

Прием для нахождения этих коэффициентов во второй половине XVIII века был применен Эйлером и независимо от него в начале XIX века—Фурье.

Впредь будем предполагать функцию непрерывной или кусочнонепрерывной в промежутке .

Допустим, что разложение (4) имеет место. Проинтегрируем его почленно от до ; в результате получим:



Но, как легко видеть,


(5)


Поэтому все члены под знаком суммы будут равняться нулю, и окончательно получаем


(6)


Для того чтобы найти значение коэффициента , умножим обе части равенства (4) на и снова проинтегрируем почленно в том же промежутке:


В виду (5) .

если , и, наконец,

(9)


Таким образом, обращаются в нуль все интегралы под знаком суммы, кроме интеграла, при котором множителем стоит именно коэффициент . Отсюда получаем:



Аналогично, умножая разложение (4) на и затем, интегрируя почленно, определим коэффициент при синусе:



Формулы, по которым вычисляются коэффициенты , называются формулами Эйлера-Фурье, а сами коэффициенты называются коэффициентами Фурье для данной функции. И, наконец, тригонометрический ряд (4), составленный по этим коэффициентам, получил название ряд Фурье для данной функции.

Дадим теперь отчет в том, какова логическая ценность проведенных рассуждений. Мы исходили из того, что тригонометрический ряд (4) имеет место, поэтому вопрос о том, отвечает ли это действительности, остается открытым. Мы пользовались повторно почленным интегрированием ряда, а эта операция не всегда дозволительна, достаточным условием для применения операции является равномерная сходимость ряда. Поэтому строго установленным условием можно считать лишь следующее:

если функция f(x) разлагается в равномерно сходящийся тригонометрический ряд (4), то этот ряд будет являться ее рядом Фурье.

Если же не предполагать наперед равномерности сходимости, то все приведенные выше соображения не доказывают даже того, что функция может разлагаться только в ряд Фурье. Эти рассуждения можно рассматривать лишь как наведение, достаточное для того, чтобы в поисках тригонометрического разложения данной функции начать ее с ряда Фурье, обязуясь установить условия, при которых он сходится и притом именно к данной функции.

Пока этого не сделано, мы имеем право лишь формально рассматривать ряд Фурье данной функции, но не можем о нем ничего утверждать, кроме того, что он «порожден» функцией f(x). Эту связь обычно обозначают так:



избегая знака равенства.

Ортогональные системы функций

Две функции и определенные на промежутке называются ортогональными на этом промежутке, если интеграл от их произведения равен нулю:




Рассмотрим систему функций , определенных в промежутке [a, b] и непрерывных или кусочно-непрерывных. Если все функции данной системы попарно ортогональны, то есть



то ее называют ортогональной системой функций. При этом всегда будем полагать, что



Если , то система называется нормальной. Если же это условие не выполняется, то можно перейти к системе , которая уже заведомо будет нормальной.

Важнейшим примером ортогональной системы функций как раз и является тригонометрическая система


(10)


в промежутке , которую мы рассматривали ранее. Ее ортогональность следует из соотношений (5), (7), (8). Однако она не будет нормальной ввиду (9). Умножая тригонометрические функции (10) на надлежащие множители, легко получить нормальную систему:


(10*)


Пусть в промежутке дана какая-нибудь ортогональная система функций . Зададимся целью разложить определенную в функцию в «ряд по функциям » вида:


(11)


Для определения коэффициентов данного разложения поступим так же, как мы это сделали в предыдущем параграфе, а именно умножим обе части равенства на и проинтегрируем его почленно:



В силу ортогональности системы, все интегралы справа, кроме одного, будут равны нулю, и легко получается:


(m=0, 1, 2, …) (12)


Ряд (11) с коэффициентами, составленными по формулам (12), называется обобщенным рядом Фурье данной функции, а сами коэффициенты—ее обобщенными коэффициентами Фурье относительно системы . В случаи нормальной системы функций коэффициенты будут определяться следующим образом:




В данном случаи все замечания сделанные в предыдущем параграфе необходимо повторить. Обобщенный ряд Фурье, построенный для функции , связан с ней лишь формально и в общем случае эту связь обозначают следующим образом:


Случайные файлы

Файл
109109.rtf
30869.rtf
102595.rtf
96920.rtf
37448.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.