Мономиальные динамические системы (85998)

Посмотреть архив целиком

Федеральное агентство по образованию Российской Федерации



САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО



Кафедра дискретной математики

и информационных технологий


Курсовая работа


МОНОМИАЛЬНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ


Студента 4 курса факультета КНиИТ

дневного отделения



Научный руководитель

доцент, к.ф.-м.н. Л.Б. Тяпаев


Зав. Кафедрой ДМиИТ

доцент, к.ф.-м.н. Л.Б. Тяпаев






Саратов 2010


СОДЕРЖАНИЕ


Введение

1. Теоретическая часть

1.1 Конечные динамические системы

1.2 Сокращение мономиальных систем

1.3 Линейные системы над конечными коммутативными кольцами.

Заключение

Список использованных источников



ВВЕДЕНИЕ


Важнейшая проблема в теории динамических систем заключается в том, чтобы связать структуру системы с её динамикой. В данной курсовой работе рассматривается такая связь для семейства нелинейных систем над произвольными конечными областями. Для систем, которые могут быть описаны мономами, можно получить информацию о конечной циклической структуре для структуры мономов. В частности, курсовая работа содержит достаточное условие для мономиальных систем, имеющих только фиксированные элементы, в качестве конечных циклов. Условие позволяет уменьшить проблему изучения Булевых мономиальных систем и линейных систем над конечными кольцами.



1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ


1.1 Конечные динамические системы


Конечные динамические системы – динамические системы с конечным набором состояний в дискретном времени. Широко известны примеры использование клеточного автомата и Булевой сети, они нашли широкое применение в машиностроении, в компьютерных науках, и, ещё раньше, в биологической статистике. Чаще общие многопозиционные системы используются в теории управления, в проектировании и анализе компьютерного моделирования. Основной математический вопрос, который обычно возникает в большинстве из этих наук – как анализировать динамику модели без фактического перечисления всех состояний переходов, так как перечисление имеет экспоненциальную сложность в количестве переменных в модели.

Для ответа на поставленный вопрос, обозначим конечную динамическую систему как функцию , где – конечный набор. Динамика заключается в повторении и кодируется в его фазовом пространстве , которое является ориентированным графом определённым следующим образом. Вершина – элемент из . Существует ориентированная дуга в если . В частности, допустима ориентированная дуга в саму себя. То есть кодирует все состояния переходов , и имеет свойство: для каждой вершины имеется полустепень исхода точно равная 1. Каждый компонент связанного графа состоит из направленного цикла, так называемого конечного цикла, с направленным деревом приложенным к каждой вершине в цикле, состоящем из так называемых переходов.

Любую Булеву сеть можно представить как конечную динамическую систему , где – конечная область над двумя элементами и . В данной курсовой работе, изучаются конечные динамические системы , где – любая конечная область и . Точнее, рассматривается семейство нелинейных конечных систем, для которых можно получить информацию относительно динамики структуры функции.

Пусть , – конечная динамическая система. Рассмотрим, как может быть описана в зависимости от координатных функций , то есть, . Известно что любая теоретико-множественная функция может быть представлена полиномиалом в . Этот полиномиал может быть выбран таким образом, чтобы любая переменная в нём была в степени меньшей чем . То есть, для любого имеется уникальное , такое что для всех . Следовательно, любая конечная динамическая система над конечной областью может быть представлена как полиномиальная система.

В случае, где все – линейные полиномиалы без константного описания, динамику линейных систем можно полностью определить ее матричным представлением. Пусть – матричное представление линейной системы . Тогда количество конечных циклов и их длинна, так же как структура переходов, может быть определена разложением на множители характерной полиномиальной матрицы . Структура конечных циклов была определена ранее Элспасом, и для аффинных систем Миллиганом и Уилсоном.

В данной курсовой работе рассматривается класс нелинейных систем, описанных специальным типом полиномиалов, а именно мономами. То есть, рассматриваются системы , такие, что каждый был полиномиалом вида , или константой. Допустимо предположение, что никакая координатная функция не константа, так как это частный случай переменной. Некоторые классы мономиальных систем и их динамические поведения изучались прежде в работах: Мономы клеточного автомата, Булевы мономиальные системы, мономиальные системы над периодическими числами и мономиальные системы над конечными областями.

В работе «Булевы мономиальные системы» изучался специальный класс Булевых мономиальных систем, а именно те, которые имеют фиксированные элементы в качестве конечных циклов, так называемые системы конечных элементов. Причиной для рассмотрения именно этого класса стало использование полиномиальных систем в качестве моделей для биохимических сетей. В зависимости от экспериментально рассматриваемой системы, такие сети часто проявляют устойчивые состояния динамики. То есть, их динамические модели имеют фазовые пространства, в которых конечные циклы – фиксированные элементы. С целью подбора модели, было бы полезно иметь структурный критерий распознания фиксированных элементов системы. Главная цель данной работы ответить на вопрос о мономиальных системах над общей конечной областью , а так же, на вопрос о связи Булевой мономиальной системы и линейной системы над кольцом .


1.2 Сокращение мономиальных систем


Пусть : – полиномиальная система, где каждый – моном, такой, что , где – неотрицательное целое число. То есть, может быть описано матрицей . В первую очередь связывается с Булевой мономиальной системой и линейной системой над кольцами . В работе «Булевы мономиальные системы» называется системой конечных элементов если все конечные циклы заключаются в фиксированном элементе. Покажем что – конечный элемент системы тогда, и только тогда, когда и – системы конечных элементов.

Определение 1.2.1.

Для , мы определим базис , обозначенный supp(u), равный , где



Мономиальная система порождает Булеву мономиальную систему на с параметрами , где и v=supp(u).

Лемма 1.2.1.


- коммутативная диаграмма.


Доказательство.

Это прямо доказывается тем что supp(f(u))=f(supp(u)).

Так как на множестве всех таких, что supp(u)=u, появляется следующие прямые следствия.

Следствие 1.2.1.

Фазовое пространство – подграф фазового пространства .

Следствие 1.2.2.

Предположим что – система конечных элементов. Если – цикл в фазовом пространстве , тогда для всех .

Пример 1.2.1.

Пусть .

- состоит из всех возможных наборов длины 3 из трёх элементов: 0, 1, 2.

Это наборы:



Используя функцию , определим переходы в фазовом пространстве .


000 - ,

001 - ,

002 - ,

010 - ,

020 - ,

100 - ,

200 - ,

111 - ,

110 - ,

112 - ,

101 - ,

121 - ,

011 - ,

211 - ,

222 - ,

220 - ,

221 – ,

202 - ,

212 - ,

022 - ,

122 - ,

012 - ,

021 - ,

210 - ,

102 - ,

120 - ,

210 - ,

201 - ,


Так как , то . Используя эту функцию, определим переходы в фазовом пространстве .


000 - ,

001 - ,

010 - ,

100 - ,

101 - ,

011 - ,

110 - ,

111 - .


На рисунке 1.2.1 и 1.2.2 изображены фазовое пространство системы и ее «Булеанизяция» , соответственно.


Рис. 1.2.1. Фазовое пространство .


Рис. 1.2.2. Фазовое пространство .


Затем связывается с - размерной линейной системой над конечным кольцом. Заметим сначала что – изоморфный, как Абелева группа, для через изоморфизм , появляется возможность генератора для циклической группы . В первую очередь обратим внимание, что множество векторов со всеми ненулевыми вхождениями – постоянны для .

Пусть – генератор для циклической группы ,и пусть .

Тогда .

Определение 1.2.2.

Обозначим для .

Видно что – линейное преобразование - элемента. Но можно рассматривать его, как линейное преобразование для - элемента, рассматривая как конечное кольцо, которое обозначим – . То есть, имеется линейное преобразование .

Это доказывает следующую лемму.

Лемма 1.2.2.


- коммутативная диаграмма.


Обратим внимание, что вертикальные стрелки – изоморфизмы. Это значит, что они сохраняют фазовое пространство структуры, включая длину конечных циклов. В частности, имеется следующее следствие.

Следствие 1.2.3.

Фазовое пространство изоморфно к подграфу фазового пространства , состоя из всех наборов с базисным вектором .

Пример 1.2.2.

Для мономиальной системы в примере 1.2.1, определим , где


.



Рассчитаем переходы в фазовом пространстве .


Случайные файлы

Файл
153222.rtf
506.doc
tmm.doc
159822.rtf
14916-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.