Открытые сети с многорежимными стратегиями обслуживания и информационными сигналами (85975)

Посмотреть архив целиком

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра ТВ и мат статистики









Курсовая работа

ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ



Исполнитель:

Студент группы М-32 Левашов А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент

Малинковский М.Т.





Гомель 2007



СОДЕРЖАНИЕ


ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ

ВВЕДЕНИЕ

1. ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ОТРИЦАТЕЛЬНЫМИ ЗАЯВКАМИ

2. ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ


- число узлов в сети массового обслуживания, размерность вектора состояний марковского процесса, описывающего сеть;

- число заявок, циркулирующих в замкнутой сети;

- матрица маршрутизации для открытой сети;

- матрица маршрутизации для замкнутой сети;

- состояние -го узла;

- число заявок в -ом узле ( для открытой сети, для замкнутой сети);

- номер режима работы прибора в -м узле ;

- состояние -го узла в момент времени ;

- число заявок в -м узле в момент времени ;

- номер режима работы прибора в -м узле в момент времени ;

- состояние сети массового обслуживания;

- марковский процесс, описывающий состояние сети массового обслуживания в момент времени ;

- марковский процесс, описывающий состояние изолированного узла в фиктивной окружающей среде;

- пространство состояний случайного процесса и марковского процесса в случае открытой сети;

- пространство состояний случайного процесса и марковского процесса в случае замкнутой сети;

- пространство состояний марковского процесса для открытой сети и для замкнутой сети);

- интенсивность перехода марковского процесса с непрерывным временем и не более чем счетным пространством состояний из состояния в состояние ;

- интенсивность выхода марковского процесса из состояния ;

- стационарное распределение марковского процесса .

- стационарное распределение марковского процесса в случае открытой сети;

- стационарное распределение марковского процесса в случае замкнутой сети;

- интенсивность пуассоновского потока, поступающего в открытую сеть;

- интенсивность пуассоновского потока положительных заявок;

- интенсивность пуассоновского потока отрицательных заявок (сигналов);

- интенсивность пуассоновского потока сигналов, увеличивающих номер режима;

- интенсивность пуассоновского потока сигналов, уменьшающих номер режима;

- интенсивность обслуживания прибором -го узла, находящегося в состоянии ;

- интенсивность перехода прибора -го узла с режима на режим ;

- интенсивность перехода прибора -го узла с режима на режим ;

- интенсивности потоков положительных заявок, отрицательных сигналов, сигналов увеличения номера режима, сигналов уменьшения номера режима соответственно в -й узел открытой сети;

- вероятности направления в -й узел поступающих в открытую сеть положительных заявок, отрицательных сигналов, сигналов уменьшения номера режима, сигналов увеличения номера режима соответственно;

- вероятности для заявки, обслуженной в -м узле, перейти в -й узел с превращением ее в положительную заявку, отрицательный сигнал, сигнал уменьшения номера режима, сигнал увеличения номера режима соответственно;

- индикатор события , равный 1, если происходит, и равный 0, если не происходит.



ВВЕДЕНИЕ


Важными задачами для развития современного общества являются сбор, обработка, хранение и распространение информации. Передача информации представляет собой основу для решения этих задач и потому требует тщательного изучения. Адекватное описание процесса передачи информации с помощью математических моделей может быть осуществлено в рамках теории массового обслуживания. При этом для многих реальных систем такой процесс моделируется посредством сетей массового обслуживания. Например, к указанному результату приводит математическое моделирование мультипрограммных вычислительных систем и анализ их производительности, проектирование и анализ сетей передачи данных и сетей ЭВМ.

В начале XX века датский ученый А.К.Эрланг, работавший на копенгагенской телефонной станции, поставил и решил ряд новых математическтх задач, позволивших оценивать характеристики телефонных и телеграфных линий связи. Это способствовало возникновению нового направления в теории вероятностей - теории массового обслуживания. На начальной стадии своего развития теория массового обслуживания имела дело с системами массового обслуживания, которые описываются потоками однородных заявок, поступающих в систему, процедурами обслуживания с помощью одного или нескольких каналов, процедурами формирования очередей и способами организации процесса ожидания заявок. Строгое научное описание случайных процессов в теории массового обслуживания и их всестороннее исследование впервые было осуществлено А.Я.Хинчиным. Он исследовал одноканальную систему с ожиданием, простейшим входным потоком и рекуррентным обслуживанием, установив для нее так называемый основной закон стационарной очереди: стационарное распределение числа заявок в системе совпадает с их стационарным распределением в случайные моменты ухода заявок из системы. Большой вклад в развитие теории массового обслуживания внесли Ю.К.Беляев, А.А.Боровков, Б.В.Гнеденко, Н.Джейсуолл, Дж.Р.Джексон, Ф.П.Келли, Дж.Кендалл, Дж.Ф.С.Кингмэн, Л.Клейнрок, Г.П.Климов, И.Н.Коваленко, С.Пальм, Ф.Поллачек, Ю.В.Прохоров, Дж.Риордан, Т.Саати, В.Л.Смит и др.

В 1957г. Дж.Р.Джексон впервые ввел в рассмотрение понятие открытой сети массового обслуживания ([99]), а в 1967г. Гордон и Ньюэлл ввели аналогичное понятие замкнутой сети ([91]). В отличие от системы массового обслуживания сеть представляет собой более сложное образование, состоящее из систем массового обслуживания, называемых узлами сети, которые взаимодействуют между собой с помощью некоторого вероятностного механизма. В открытых сетях заявки могут поступать извне, а также уходить из сети. В замкнутых сетях сохраняется постоянное число заявок, которые с помощью случайной маршрутизации могут перемещаться между узлами сети; при этом поступление заявок в сеть и уход заявок из сети невозможны.

Результаты Джексона и Гордона-Ньюэлла не использовались до тех пор, пока в 1971г. Ф.Р.Мур [115] не обнаружил, что замкнутые сети адекватно описывают вычислительные системы со многими ресурсами. С этого момента теория сетей обслуживания стала быстро развиваться благодаря задачам, связанным с математическим моделированием мультипрограммных вычислительных систем и анализом их производительности, с проектированием и анализом сетей передачи данных и сетей ЭВМ. Дополнительный толчок к дальнейшему развитию теории дала разработка и использование в повсеместной практике различных глобальных и локальных сетей таких, например, как EZERNET, INTERNET и т.д. Значительный вклад в развитие теории сетей внесли Г.П.Башарин, А.А.Боровков, Э.Геленбе, Дж.Джексон, В.А.Ивницкий, Ф.П.Келли, Д.Кениг, Л.Клейнрок, Ю.В.Малинковский, М.Миязава, Б.Меламед, Р.Мюнтц, С.Е.М.Перс, П.К.Поллетт, А.Н.Рыбко, Р.Серфозо, Ю.М.Сухов, П.Тейлор, А.Л.Толмачев, Д.Тоусли, П.Уиттли, Дж.Уолрэнд, Г.И.Фалин, В.Хендерсон, Х.Чао, К.Ченди, Р.Шассбергер и многие другие.

Состояние сети массового обслуживания обычно характеризуется вектором, координаты которого описывают состояния отдельных узлов сети. В силу многомерности случайного процесса состояний и статистической зависимости между координатами исследование сетей массового обслуживания на порядок сложнее, чем исследование систем массового обслуживания. Даже в случае экспоненциальных сетей, когда случайный процесс состояний является марковским, его эргодическое стационарное распределение удовлетворяет настолько сложной системе уравнений, что решить ее удается в основном только тогда, когда решение имеет форму произведеня. Множители в этом произведении зависят только от свойств индивидуальных узлов. В имеющейся литературе по стационарному распределению экспоненциальных сетей практически не рассматриваются сети с ненадежными или частично ненадежными приборами. В считанных работах рассмотрены только очень частные вырожденные случаи и то для сетей, состоящих из двух узлов. В то же время в практических ситуациях оборудование может частично или полностью выходить из строя. Например, при работе на персональном компьютере очень часто нарушаются функциональные связи между некоторыми файлами, программами или другими элементами, хотя компьютер продолжает работать. Налицо частичная потеря работоспособности, а значит, уменьшение интенсивности обслуживания.

Поэтому в данной работе предпринята попытка построения моделей, адекватно описывающих такую ситуацию. Рассмотрены экспоненциальные сети с многорежимными стратегиями обслуживания, в которых обслуживающие устройства в узлах частично ненадежны и в различных режимах функционирования работают с разными интенсивностями. Для таких сетей находится инвариантная вероятностная мера в мультипликативной форме.


Случайные файлы

Файл
129233.rtf
151666.rtf
115242.rtf
43054.rtf
95294.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.