Решетки субнормальных и f-субнормальных подгрупп (85827)

Посмотреть архив целиком















Курсовая работа


"Решетки субнормальных и -субнормальных подгрупп"




Введение


В теории конечных групп одним из центральных понятий является понятие -субнормальной подгруппы. Изучению свойств субнормальных подгрупп конечных групп положило начало в 1939 г. известная работа Виландта [10], оказавшая огромное влияние на развитие всей теории конечных групп в последующие годы.

В первом разделе курсовой работы изучаются основные положения теории субнормальных подгрупп. Важнейшим достижением данной теории является результат Виландта о том, что множество всех субнормальных подгрупп любой конечной группы образует решетку.

Формации, т.е. классы групп, замкнутые относительно фактор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп. Хотя теория конечных групп никогда не испытывала недостатка в общих методах, идеях и нерешенных проблемах, все же обилие полученных результатов с неизбежностью привело к необходимости разработки новых общих методов и систематизирующих точек зрения. Толчок, произведенный работой Гашюца [8], вызвал целую лавину исследований и привел к возникновению нового направления – теории формаций.

В теории формаций одним из важнейших понятий является понятие -субнормальных подгрупп, которое является естественным расширением субнормальных подгрупп. Поэтому, конечно, возникает задача о построении теории -субнормальных подгрупп, аналогичной теории субнормальных подгрупп Виландта.

Во втором разделе курсовой работы рассматриваются минимальные не -группы.

В третьем разделе приводится описание локальных наследственных формаций, обладающих решеточным свойством для -субнормальных подгрупп.




1. Субнормальные подгпруппы и их свойства


Определение. Пусть – подгруппа группы . Цепь подгрупп



в которой для любого , ,…, , называется субнормальной -цепью, а число – длиной этой цепи. Наименьшее , при котором существует хотя бы одна субнормальная -цепь длины , называется дефектом подгруппы в и обозначается через .

Определение. Пусть – подгруппа группы . Если существует хотя бы одна субнормальная -цепь, то подгруппа называется субнормальной, обозначается .

Лемма. Если субнормальна в , и субнормальна в , то субнормальна в .

субнормальна в , следовательно, по определению субнормальной подгруппы существует субнормальная -цепь



субнормальна в , следовательно, существует субнормальная -цепь



Таким образом, мы получили субнормальную -цепь



то есть субнормальна в по определению. Лемма доказана.

Теорема. Если подгруппа субнормальна, но не нормальна в , то существует такой элемент , что



Доказательство. Пусть – дефект подгруппы в группе . Рассмотрим субнормальную -цепь длины :



Из того, что не нормальна в , следует, что . не нормальна и в , иначе мы получаем противоречие с тем, что – дефект подгруппы в группе , так как в этом случае подгруппу в цепи можно было опустить. Поэтому существует элемент такой, что . Теперь имеем



Так как , то . С другой стороны, и , откуда получаем . Теорема доказана.

Определение. Пусть – субнормальная подгруппа дефекта в . Субнормальная -цепь



называется канонической, если для любой субнормальной -цепи




имеет место , , ,…, .

Другими словами, каноническая субнормальная цепь входит почленно в любую другую субнормальную цепь той же длины.

Теорема. Если субнормальна в , то существует единственная каноническая субнормальная -цепь.

Доказательство. Пусть – дефект подгруппы в группе . Будем рассматривать все возможные субнормальные -цепи длины .



все субнормальные -цепи длины ( – второй индекс). Положим . Так как , то для любого , ,…, мы имеем



Таким образом, цепь



является субнормальной -цепью длины и, следовательно, не имеет повторений. Так как при любых и , то теорема доказана.

Теорема. Если субнормальна в и – подгруппа , то пересечение есть субнормальная подгруппа .

Доказательство. Рассмотрим субнормальную -цепь минимальной длины :



Положим . Получаем цепь



Ясно, что она будет субнормальной, так как . Действительно, пусть , значит, и . Тогда для любого , так как и .

Мы получили субнормальную -цепь. Теорема доказана.

Следствие. Пусть и – подгруппы группы . Если субнормальна в и – подгруппа , то субнормальна в .

Доказательство. Пусть и цепь



является субнормальной -цепью.

Положив , получим субнормальную -цепь



что и требовалось.

Теорема. Пусть субнормальна в и субнормальна в . Тогда пересечение есть субнормальная подгруппа в.

Доказательство. Пусть – наибольший из дефектов подгрупп и в группе . Очевидно, существует (возможно, с повторениями) цепи



Положим , , ,…, . Из , следует, что нормальна в . Следовательно, цепь



является субнормальной -цепью, что и доказывает теорему.

Лемма. Если субнормальна в , а – нормальная подгруппа группы , то произведение есть субнормальная подгруппа группы .

Доказательство. субнормальна в , следовательно, существует субнормальная -цепь



Следовательно, цепь



будет субнормальной.

Действительно, так как и , то . Лемма доказана.

Лемма. Если подгруппы и субнормальны в и , топроизведение есть субнормальная подгруппа группы .

Доказательство. Если нормальна в , то результат следует по лемме 1.9.

Предположим, что не нормальна в , то есть . Будем считать, что теорема верна для субнормальных подгрупп с дефектом меньшим . Таким образом, если и субнормальны в причем и , то по индуктивному предположению субнормальна в .

Пусть – каноническая субнормальная -цепь. Так как нормализует подгруппу , то для любого цепь



будет субнормальной -цепью. По свойству канонической субнормальной -цепи , а значит, для любого , ,…, (по определеделению).

Следовательно, содержится в для любого . Так как и , то по индукции субнормальна в . По следствию 1.7.1 субнормальна в . Так как и , то . Таким образом, , , а значит, по лемме 1.9 подгруппа субнормальна в . К тому же , то мы получаем . Лемма доказана.

Теорема. Если и – субнормальный подгруппы группы , то есть также субнормальная подгруппа .

Доказательство. Положим . Среди субнормальных подгрупп группы , содержащихся в , выберем подгруппу , имеющю наибольший порядок. По следствию 1.7.1 субнормальна в . Докажем, что нормальна в . Предположим противное, то есть что не нормальна в . Тогда по теореме 1.4 найдется такой элемент , что , и . Так как субнормальна в и , то субнормальна в . Получается следующая ситуация: и субнормальны в , . По лемме 1.10 субнормальна в . Ввиду выбора отсюда следует , что противоречит .

Итак, нормальна в , а значит, и нормализуют подгруппу . По лемме 1.10 и субнормальны в . Так как и , то ввиду выбора получаем . Следовательно, , откуда вытекает, что . Теорема доказана.

Объединим теоремы 1.8 и 1.11 в один результат.

Теорема (Виландт). Множество всех субнормальных подгрупп группы образует подрешетку решетки .

Отметим одно часто используемое приложение теорем 1.4 и 1.12.

Теорема. Пусть – некоторое непустое множество субнормальных подгрупп группы , удовлетворяющее следующим условиям:

1) если и , то ;

2) если , , , , то .

Тогда для любой подгруппы .

Доказательство. Возьмем произвольную подгруппу из . Если не нормальна в , то по теореме 1.4 найдется такой элемент , что , , . По условиям 1) и 2) , . Если не нормальна в , то найдется такой, что , , . Тогда и . Если не нормальна, то описанную процедуру применяем к . Так как конечна, то этот процесс завершится построением нормальной подгруппы , представимой в виде , где – некоторые элементы из . Очевидно, , и теорема доказана.

Следствие. Если – непустой радикальный класс, то содержит все субнормальные -подгруппы группы .

Доказательство. Пусть – множество всех субнормальных -подгрупп из . Ввиду теоремы 1.12 легко заметить, что удовлетворяет условиям 1) и 2) теоремы 1.13.

Следствие. Для любой субнормальной подгруппы группы справедливы следующие утверждения:

1) если -группа, то ;

2) если нильпотентна, то ;


Случайные файлы

Файл
128841.rtf
7154-1.rtf
117848.rtf
59019.rtf
91086.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.