Математична логіка (85764)

Посмотреть архив целиком

Міністерство освіти і науки України

Херсонський державний університет

Факультет фізики, математики та інформатики






Методичне забезпечення розділу

Математична логіка

курсу дистанційного навчання дисципліни дискретна математика


Курсова робота





Науковий керівник

Доцент

Шишко Л.C.


Виконавець студент денної

Рибакін В.В.

форми навчання 421 групи




Херсон 2008

План


Вступ

Розділ І. Логіка висловлювань.

  1. Основні поняття логіки висловлювань.

  2. Закони логіки висловлювань.

  3. Нормальні форми логіки висловлювань.

Розділ ІІ. Логіка предикатів.

2.1. Основні поняття логіки предикатів.

2.2. Закони логіки предикатів.

2.3. Випереджена нормальна форма логіки предикатів.

Література.


Вступ


Математична логіка займає одне з найважливіших місць у сучасній математичній науці. Вона знайшла широке застосування в найрізноманітніших галузях наукових досліджень. Математична логіка з великим успіхом використовується в теорії релейно-контактних схем і в теорії автоматів, тобто в кібернетиці, в лінгвістиці, в економічних дослідженнях, у фізіології мозку і психології тощо.

Актуальність. Математична логіка дуже важлива для вчителів математики. Вона дає можливість краще зрозуміти структурно-логічну схему шкільного курсу математики, глибше вникнути в суть поняття доведення, з’ясувати зміст поняття логічного слідування, встановити зв’язки між різного роду теоремами тощо. З цих причин Я й обрав дану тему для написання курсової роботи. На мою думку ця тема є важливою в математиці. Тому що розвиток математичної логіки як науки дав значний вплив у розвитку математичної науки. Значну внесок у розвиток математичної логіки зробили такі вчені як: Платон, Аристотель, Лейбніц, Буль, Гільберт.

Об’єктом дослідження є основні поняття математичної логіки.

Історично математична логіка будувалась як алгебраїчна теорія, у якій зв’язки між різними поняттями логіки виражалися за допомогою операцій. Така побудова математичної логіки згодом дістала назву алгебри висловлень і алгебри предикатів, причому алгебра висловлень уходить як частина в алгебру предикатів. Вона називається також змістовною побудовою математичної логіки і нею часто вичерпується виклад математичної логіки, причому апарату логіки предикатів достатньо, щоб ставити і розв’язувати досить важливі й складні задачі. Поряд з потребою змістовної побудови математичної логіки виникла потреба будувати математичну логіку як формально-аксіоматичну теорію, для якої алгебра предикатів є однією з можливих інтерпретацій.

У першому розділі розглянуто змістовні поняття й елементи логіки висловлень. Разом із цим, уже в першому розділу курсової роботи вводиться проблематика множин і логіки, яка істотно використовується в штучному інтелекті. А в другому розділі описано логіку предикатів.


Розділ І. Логіка висловлювань.


1.1. Основні поняття логіки висловлювань


Висловлюванням називають розповідне речення, про яке можна сказати, що воно або істинне, або фальшиве, але не одне й інше разом. Розділ логіки, що вивчає висловлювання та їхні властивості, називають пропозиційною логікою, або логікою висловлювань. Уперше систематичне викладення логіки було зроблене грецьким ученим Аристотелем понад 2300 років тому.

Приклад 1.1. Наведемо приклади речень.

  1. Сніг білий.

  2. Київ - столиця України.

  3. х+1=3.

  4. Котра година?

  5. Читай уважно!

Два перших речення є висловлюваннями, останні три - ні. Третє речення набуває істинне або фальшиве значення залежно від значення змінної х, четверте та п'яте речення - не розповідні.

Значення "істина" або "фальш", які надані деякому висловлюванню, називають значенням істинності цього висловлювання. Значення "істина" позначають літерою Т (від англійського truth), а "фальш" - літерою F (від false). Для позначення висловлювань використовують малі латинські букви як з індексами, так і без них. Символи, що використовують для позначення висловлювань, називають атомарними формулами, або атомами.

Приклад 1.2.

  1. р: "Сніг білий".

  2. g: "Київ - столиця України".

Тут символи р, g атомарні формули.

Багато речень утворюють об'єднанням одного або декількох висловлювань. Отримане висловлювання називають складним висловлюванням. Його утворюють із наявних висловлювань застосуванням логічних зв'язок. Такі побудови вперше розглянуто 1845 р. у книзі англійського математика Д.Буля "The Laws of Truth".

Розглянемо питання побудови нових висловлювань з тих, що ми вже маємо. Для цього в логіці висловлювань використовують п'ять логічних зв'язок: заперечення (читають "не" та позначають "¬"), кон'юнкцію (читають "і" та позначають ""), диз'юнкцію (читають "або" та позначають ""), імплікацію (читають "якщо..., то" та позначають "→") та еквівалентність (читають "тоді й лише тоді" та позначають "~").

Приклад 1.3.

  1. Сніг білий і небо теж біле.

  2. Якщо хороша погода, то ми їдемо відпочивати.

У наведених прикладах логічні зв'язки - це "і" та "якщо..., то".

Приклад 1.4. Розглянемо прості висловлювання, які позначимо:

р: "Висока вологість", g: "Висока температура", r: "Ми почуваємо себе добре". Тепер речення "Якщо висока вологість та висока температура, то ми не почуваємо себе добре" можна записати у вигляді складного висловлювання ((pg)→(¬r)).

У логіці висловлювань атом p або складне висловлювання називають правильно побудованою формулою, або формулою. При вивченні формул розглядають їх два аспекти — синтаксис та семантику.

Синтаксис - це сукупність правил, які дозволяють будувати формули та розпізнавати правильні формули серед послідовностей символів.

Формули у логіці висловлювань визначають за такими правилами:

  1. Атом є формулою.

  2. Якщо р формула, то (¬p) - теж формула.

  3. Якщо р та g - формули, то (рg), (рg), (р→g), (¬g) - формули.

  4. Жодних інших формул, крім породжених застосуванням вказаних вище правил, немає.

Формули, так само як і атоми, позначають малими латинськими буквами з індексами або без них.

Приклад 1.5. Вирази (р→), (р), (р¬), (g) - не формули.

Якщо не виникає непорозумінь, то деякі пари круглих дужок можуть бути випущені.

Приклад 1.6. Вирази рg, р→g є формулами (рg) та (р→g), відповідно.

Семантика - це сукупність правил, які надають формулам значення істинності.

Нехай p та g — формули. Тоді значення істинності формул (¬p), (рg), (рg), (р→g) та (р~g) так пов'язані зі значеннями істинності формул р та g.

  1. Формула (¬р) істинна, коли р фальшива, і фальшива, коли р істинна. Її читають "не р", або "це не так, що р" та називають запереченням р. Замість (¬р) заперечення р позначають також . У такому разі знак заперечення одночасно відіграє роль дужок.

  2. Формула (рg) істинна, якщо р та g одночасно істинні. У всіх інших випадках (рд) фальшива. Формулу (рg) читають "р і g" та називають кон’юнкцією формул р та g.

  1. Формула (рg) істинна, якщо істинна принаймні одна з формул р або g. В іншому випадку (рg) - фальшива. Формулу (рg) читають "р або g" та називають диз'юнкцією формул р та g.

  2. Формула (р→g) фальшива, якщо р істинна, а g - фальшива. У всіх інших випадках (р→g) істинна. Формулу (р→g) читають "якщо р, то g", "з р випливає g", або "р лише, якщо g" та називають імплікацією. Тут атом р називають припущенням імплікації, а g - висновком імплікації.

5. Формула (р~g) істинна, якщо р та g мають однакові значення істинності. У всіх інших випадках (р~g) - фальшива. Формулу (р~g) читають "р тоді й лише тоді, коли g" або ″р еквівалентне g" та називають еквівалентністю формул р та g.

Семантику логічних зв'язок зручно задавати за допомогою таблиць, якими визначають значення істинності формул за значеннями істинності атомів у цих формулах. Такі таблиці називають таблицями істинності. Семантику введених логічних зв'язок у формі таблиць істинності надано у табл. 1.1.


Таблиця 1.1

р

g

(¬p)

(pg)

g)

(p→g)

(p~g)

T

T

F

T

T

T

T

T

F

F

F

T

F

F

F

T

T

F

T

T

F

F

F

T

F

F

T

T


Приклад 1.7. Знайдемо заперечення висловлювання "Сьогодні п'ятниця". Таке заперечення - "Це не так, що сьогодні п'ятниця". Це речення також можна сформулювати як "Сьогодні не п'ятниця" або "П'ятниця не сьогодні". Зауважимо, що речення, які пов'язані з часовою змінною, не є висловлюваннями доти, доки не визначений момент часу. Це ж стосується й змінних у реченнях, які характеризують місце або особу, до вказування відповідного місця або конкретної особи.

Приклад 1.8. Знайдемо кон'юнкцію висловлювань p та g, де р є висловлюванням "Сьогодні п'ятниця", а g - висловлюванням "Сьогодні падає дощ". Кон'юнкцією цих висловлювань є висловлювання "Сьогодні п'ятниця і сьогодні падає дощ". Це висловлювання істинне у дощову п'ятницю і фальшиве не в п'ятницю або у не дощову п'ятницю.


Случайные файлы

Файл
85790.rtf
102402.rtf
143457.rtf
12273-1.rtf
90893.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.