Локальные формации с метаабелевыми группами (85723)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

«Гомельский государственный университет

имени Франциска Скорины»

математический факультет

кафедра алгебры и геометрии








Курсовая работа


"Локальные формации с метаабелевыми группами"















ГОМЕЛЬ 2006


Содержание


Введение

1 Формация. Произведение формаций

2 Операции на классах групп

3 Экраны

3.1 Экраны формации

3.2 Формация с однородным экраном

4 Локальная формация

5 Построение локальных формаций

6 Локальные формации с заданными свойствами

Заключение

Литература




Введение


Формации, т.е. классы групп, замкнутые относительно фактор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп.

В курсовой работе рассматривается произведение формаций, операции на классах групп, приводящие к формациям. Рассматриваются локальные формации и экраны. Рассматриваются простейшие свойства локальной формации всех групп с нильпотентным компонентом.




Формация. Произведение формаций


Определение 1.1 Классом групп называют всякое множество групп, содержащее вместе с каждой своей группой и все группы, изоморфные .

Если группа (подгруппа) принадлежат классу , то она называется -группой (-подгруппой).

Определение 1.2. Класс групп называется формацией, если выполняются следующие условия:

1) каждая фактор-группа любой группы из также принадлежит ;

2) из всегда следует .

Если формации и таковы, что , то называется подформацией формации .

По определению, пустое множество является формацией (пустая формация). Множество всех групп является, конечно, формацией. Единичная формация – это непустой класс групп, состоящий лишь из единичных групп. Формациями являются: класс всех -групп, класс всех абелевых групп, класс всех нильпотентных групп, класс всех -групп ( – фиксированное простое число), класс всех нильпотентных -групп, класс всех разрешимых групп, класс всех разрешимых -групп. Мы привели пока лишь примеры тех формаций, за которыми закреплены соответствующие обозначения.

Лемма 1.1. Справедливы следующие утверждения:

1) пересечение любого множества формаций также является формацией;

2) если – некоторое множество формаций, линейно упорядоченное относительно включения , то объединение является формацией.

Доказательство осуществляется проверкой.

Определение 1.3. Пусть – непустая формация. Обозначим через и назавем - корадикалом группы пересечение всех тех нормальных подгрупп из , для которых .

Очевидно, -корадикал любой группы является характеристической подгруппой. -корадикал группы обозначают иначе через и называют -корадикалом. -корадикал будем называть нильпотентным радикалом; понятны также термины разрешимый корадикал, -разрешимый корадикал, - сверхразрешимый корадикал и т.д. -корадикал (или абелев корадикал) – это коммутант группы. Так же как и коммутант, -корадикал сохраняется при гомоморфизмах.

Лемма 1.2. Пусть – непустая формация, . Тогда справедливы следующие утверждения:

1)

2) если то

3) если и , то

Доказательство. Пусть . Тогда



Отсюда следует, что . С другой стороны,



откуда получаем . Из и следует равенство . Утверждение 1) доказано.

Пусть – естественный гомоморфизм группы на Очевидно,



откуда следует равенство . В частности, если , то . Лемма доказана.

Определение 1.4. Пусть и – некоторые формации. Если , то положим Если , то обозначим через класс всех тех групп , для которых Класс называется произведением формаций и .

Из определения 1.4 следует, что произведение формаций является пустой формацией тогда и только тогда, когда по крайней мере одна из формаций является пустой. Можно определить произведение нескольких формаций как результат последовательного умножения. Если задан упорядоченный набор формаций причем произведение уже определено, то В частности, если для любого то мы приходим к понятию степени

Понятие произведения формаций представляет интерес с точки зрения построения формаций.

Теорема 1.1. Произведение любых двух формаций также является формацией.

Лемма 1.3. Пусть и – нормальные подгруппы группы . Тогда каждый главный фактор группы -изоморфен либо некоторому главному фактору группы , либо некоторому главному фактору группы

Доказательство вытекает из рассмотрения -изоморфизма

Теорема 1.2. Пусть – некоторая формация, – класс всех тех групп, все главные факторы которых принадлежат Пусть – объединение формаций Тогда – подформация формации

Доказательство. Из леммы 1.3 выводим, что – формация. Из теоремы 1.1 и леммы 1.1 вытекает, что класс является формацией. Если – минимальная нормальная подгруппа группы , то по индукции для некоторого натурального . Но тогда либо , либо -корадикал группы . Так как , то отсюда вытекает, что , и теорема доказана.


Операции на классах групп


Определение 2.1. Всякое отображение множества всех классов групп в себя называется операцией на классах групп.

Операции мы будем обозначать, как правило, прямыми большими латинскими буквами. Результат операции , примененной к классу обозначается через Степень операции определяется так: Произведение операций определяется равенствами:



Введем операции следующим образом:

тогда и только тогда, когда вкладывается в качестве подгруппы в некоторую -группу;

тогда и только тогда, когда вкладывается в качестве нормальной подгруппы в некоторую -группу;

тогда и только тогда, когда является гомоморфным образом некоторой -группы;

тогда и только тогда, когда совподает с произведением некоторого конечного числа своих нормальных -подгрупп;

тогда и только тогда, когда имеет нормальные подгруппы такие, что



тогда и только тогда, когда является расширением -группы с помощью -группы;

тогда и только тогда, когда имеет нормальную подгруппу такую, что

Если , то вместо пишут Обратим внимание на тот факт, что если – нормальные подгруппы группы , причем для любого , то Заметим еще, что операцию можно определить с помощью понятия подпрямого произведения. Напомним (см. Каргаполов и Мерзляков [1]), что подгруппа прямого произведения называется подпрямым произведением групп если проекция на совпадает с Легко видеть, что тогда и только тогда, когда есть подпрямое произведение некоторого конечного числа -групп.

Определение 2.2. Класс называется замкнутым относительно операции или, более коротко, - замкнутым, если

Формацию можно определить теперь как класс групп, который одновременно -замкнут и -замкнут. -замкнутый класс согласно Гашюцу [3] называется насыщенным. -замкнутый класс групп называется гомоморфом. Класс групп называется замкнутым относительно подгрупп (нормальных подгрупп), если он -замкнут (соответственно -замкнут).

Лемма 2.1. . Если класс групп содержит единичную группу и -замкнут, то

Доказательство. Относительно операций и утверждение очевидно. Пусть – произвольный класс групп. Ясно, что Если , то в найдется нормальная подгруппа такая, что . Группа имеет нормальную подгруппу такую, что и Но тогда Так как , то , а значит, Таким образом, , что и требуется.

Пусть . Если , то имеет нормальную -подгруппу такую, что Группа имеет нормальную -подгруппу такую, что . Так как и , то из -замкнутости класса следует, что . Значит, , т.е. . Обратное включение очевидно.

Лемма 2.2. Для любого класса справедливо следующее утверждение:

Доказательство. Если , то Пусть Если , то , а значит, . Таким образом, . Пусть . Тогда имеет такие нормальные подгруппы , что Группа имеет такие нормальные подгруппы , что Так как , то , что и доказывает равенство

Лемма 2.3. Для любого класса имеет место включение

Доказательство. Если , то . Пусть и группа является подпрямым произведением групп , где . Рассмотрим функцию . Функция является гомоморфизмом группы в группу . Ясно, что



есть подпрямое произведение групп , причем . Следовательно, , и лемма доказана.

Лемма 2.4.

В работе Фишера, Гашюца и Хартли [1] введено следующее понятие, в некотором смысле двойственное определению формации.

Определение 2.3. Класс групп называется классом Фиттинга, если он одновременно -замкнут и -замкнут.

Класс Фиттинга мы будем в дальнейшем называть иначе радикальным классом. Ввиду двойственности (нормальная подгруппа – фактор-группа) формацию можно было бы назвать корадикальным классом.


Случайные файлы

Файл
23055.rtf
130206.rtf
147345.rtf
124204.rtf
56634.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.