Конгруэнции Фраттини универсальных алгебр (85699)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет

имени Франциска Скорины"


Математический факультет

Кафедра алгебры и геометрии





Курсовая работа


КОНГРУЭНЦИИ ФРАТТИНИ УНИВЕРСАЛЬНЫХ АЛГЕБР




Исполнитель:

студентка группы H.01.01.01 М-43

Селюкова Н.В.


Научный руководитель:

доктор физико-математических наук,

профессор кафедры Алгебры и геометрии

Монахов В. С.





Гомель 2004


Содержание


Введение

1. Основные определения, обозначения и используемые результаты

2. Свойства централизаторов конгруэнции универсальных алгебр

3. Конгруэнция Фраттини, подалгебра Фраттини и их свойства

Список литературы


Введение


Одно из направлений исследований самых абстрактных алгебраических систем, в частности, универсальных алгебр, связано с изучением, определенным образом выделенных подсистем таких систем. Например, в группах - это силовские подгруппы, подгруппа Фраттини, подгруппа Фиттинга, в алгебрах Ли --- это подалгебра Картана, Фраттини и т.д. Разработка новых методов исследований мультиколец, универсальных алгебр, нашедших свое отображение в книге Л. А. Шеметкова и А. Н. Скибы ``Формации алгебраических систем''(1), дает мощный импульс в реализации этого направленияи в универсальных алгебрах. В этой курсовой работе решается задача, связанная с изучением свойств подалгебр Фраттини и конгруэнции Фраттини универсальных алгебр, принадлежащих некоторому фиксированному мальцевскому многообразию. В частности, получены новые результаты, указывающие на связь подалгебры Фраттини с фраттиниевой конгруэнцией (теоремы (4)и(5)). Установлено одно свойство подалгебры Фраттини нильпотентной алгебры (теорема(2)). Как следствие, из полученных результатов следуют аналогичные результаты теории групп и мультиколец.

Перейдем к подробному изложению результатов курсовой работы, состоящей из введения, трех параграфов и списка литературы, состоящего из пяти наименований.

1 носит вспомагательный характер. Здесь приведены все необходимые определения, обозначения и используемые в дальнейшем результаты.

2 носит реферативный характер. Здесь приводятся с доказательствами результаты работ [??], касающееся свойств централизаторов конгруэнций.

3 является основным. На основе введенного здесь понятия --- конгруэнции Фраттини, устанавливаются некотоые свойства подалгебры Фраттини универсальной алгебры. В частности, доказывается, что подалгебра Фраттини нильпотентной алгебры нормальна в (теорема(3)).



1. Основные определения и используемые результаты


Определение 1.1[??] Пусть --- некоторое непустое множество и пусть , отображение -ой декартовой степени в себя, тогда называют -арной алгебраической операцией.


Определение 1.2[??] Универсальной алгеброй называют систему состоящую из некоторого множества с заданной на нем некоторой совокупностью операций .


Определение 1.3[??] Пусть --- некоторая универсальная алгебра и (), тогда называют подалгеброй универсальной алгебры , если замкнута относительно операций из .

Для любой операции , где и .

Для любой операции элемент фиксируемый этой операцией в принадлежит .


Определение 1.4 Всякое подмножество называется бинарным отношением на .


Определение 1.5 Бинарное отношение называется эквивалентностью, если оно:

рефлексивно

транзитивно и

симметрично


Определение 1.6 Пусть некоторая эквивалентность на , тогда через обозначают множество . Такое множество называют класс разбиения по эквивалентности содержащий элемент . Множество всех таких классов разбиения обозначают через и называют фактормножеством множества по эквивалентности .

Определим -арную операцию на фактормножестве следующим образом:


Определение 1.7 Эквивалентность на алгебре называется ее конгруэнцией на , если выполняется следующее условие:

Для любой операции для любых элементов таких, что имеет место .


Определение 1.8 Если и --- конгруэнции на алгебре , , то конгруэнцию на алгебре назовем фактором на .

тогда и только тогда, когда .

или или 1 --- соответственно наименьший и наибольший элементы решетки конгруэнций алгебры .


Лемма 1.1 (Цорна). Если любая цепь частично упорядоченного множества содержит максимальные элементы, то и само множество содержит максимальные элементы.


Определение 1.9 Пусть --- бинарное отношение на множестве . Это отношение называют частичным порядком на , если оно рефлексивно, транзитивно, антисимметрично.


Определение 1.10 Множество с заданным на нем частичным порядком называют частично упорядоченным множеством.


Теорема Мальцев А.И. Конгруэнции на универсальной алгебре перестановочны тогда и только тогда, когда существует такой тернарный оператор , что для любых элементов выполняется равенство . В этом случае оператор называется мальцевским.


Определение 1.11 Алгебра называется нильпотентной, если существует такой ряд конгруэнций , называемый центральным, что для любого .


Определение 1.12 Подалгебра алгебры называется собственной, если она отлична от самой алгебры .


Определение 1.13 Подалгебра универсальной алгебры называется нормальной в , если является смежным классом по некоторой конгруэнции алгебры .


Определение 1.14 Пусть и --- универсальные алгебры с одной и той же сигнатурой, отображение называется гомоморфизмом, если

1) и имеет место ;

2) , где и элементы фиксируемой операцией в алгебрах и соответственно.


Определение 1.15 Гомоморфизм называется изоморфизмом между и , если обратное к нему соответствие также является гомоморфизмом.


Теорема Первая теорема об изоморфизмах Пусть - гомоморфизм, --- конгруэнция, тогда .


Теорема Вторая теорема об изоморфизмах Пусть --- есть -алгебра, --- подалгебра алгебры и --- конгруэнция на . Тогда является подалгеброй алгебры , --- конгруэнцией на и .


Теорема Третья теорема об изоморфизмах Пусть --- есть -алгебра и и --- такие конгруэнции на , что . Тогда существует такой единственный гомоморфизм , что . Если , то является конгруэнцией на и индуцирует такой изоморфизм .


2. Свойства централизаторов конгруэнции универсальных алгебр


Определение 2.1 Пусть и --- конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:

1) из

всегда следует

2) для любого элемента

всегда выполняется

3) если

то

Под термином "алгебра" в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие .

Следующие свойства централизуемости, полученные Смитом [??], сформулируем в виде леммы.

Лемма 2.1 [??] Пусть . Тогда:

1) существует единственная конгруэнция , удовлетворяющая определению 2.1;

2) ;

3) если

то

Из леммы 2.1. и леммы Цорна следует, что для произвольной конгруэнции на алгебре всегда существует наибольшая конгруэнция, централизующая . Она называется централизатором конгруэнции в и обозначается .

В частности, если , то централизатор в будем обозначать .


Лемма 2.2 [??] Пусть , --- конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:

1) ;

2) , где ;

3) если выполняется одно из следующих отношений:



4) из всегда следует

Доказательство:

1) Очевидно, что --- конгруэнция на , удовлетворяющая определению 2.1. В силу пункта 1) леммы 2.1. и .

2) --- конгруэнция на , удовлетворяющая определению

2.1. Значит

3) Пусть .

Тогда

Применим к последним трем соотношениям мальцевский оператор такой, что

Тогда получим

т.е.

Аналогичным образом показываются остальные случаи из пункта 3).

4) Пусть

Тогда справедливы следующие соотношения:



Следовательно,

где --- мальцевский оператор.

Тогда

то есть .

Так как

то .

Таким образом . Лемма доказана.

Следующий результат оказывается полезным при доказательстве последующих результатов.


Лемма. 2.3 [??] Любая подалгебра алгебры , содержащая диагональ , является конгруэнцией на алгебре .

Доказательство:

Пусть

Тогда из

следует, что

Аналогичным образом из

получаем, что

Итак, симметрично и транзитивно. Лемма доказана.


Лемма 2.4 [??] Пусть . Тогда для любой конгруэнции на алгебре .

Доказательство:

Обозначим и определим на алгебре бинарное отношение следующим образом:

тогда и только тогда, когда

где

Используя лемму 2.3, нетрудно показать, что --- конгруэнция на алгебре , причем

Пусть

то есть

Тогда

и, значит

Пусть, наконец, имеет место

Тогда справедливы следующие соотношения:


Случайные файлы

Файл
1265.rtf
90879.rtf
38165.doc
148385.rtf
104888.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.