Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число (85685)

Посмотреть архив целиком

Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра алгебры и геометрии







Курсовая работа

КЛАССЫ КОНЕЧНЫХ ГРУПП , ЗАМКНУТЫЕ ОТНОСИТЕЛЬНО ПРОИЗВЕДЕНИЯ -ПОДГРУПП, ИНДЕКСЫ КОТОРЫХ НЕ ДЕЛЯТСЯ НА НЕКОТОРОЕ ПРОСТОЕ ЧИСЛО




Исполнитель:

Студентка группы М-53 Вакрилова Л.М.

Научный руководитель:

доктор ф-м наук, профессор Семенчук В.Н.





Гомель 2009


Содержание


Перечень условных обозначений

Введение

1 Описание -формаций Шеметкова

2 Описание -формаций Шеметкова

3 Критерий принадлежности групп, факторизуемых подгруппами, индексы которых не делятся на некоторое простое число, наследственно насыщенным формациям

Заключение

Список использованных источников



Перечень условных обозначений


Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].


--- множество всех натуральных чисел;

--- множество всех простых чисел;

--- некоторое множество простых чисел, т. е. ;



--- дополнение к во множестве всех простых чисел; в частности, ;

примарное число --- любое число вида .

Буквами обозначаются простые числа.

Пусть --- группа. Тогда:

--- порядок группы ;



--- множество всех простых делителей порядка группы ;

-группа --- группа , для которой ;

-группа --- группа , для которой ;

--- коммутант группы , т. е. подгруппа, порожденная коммутаторами всех элементов группы ;

--- подгруппа Фиттинга группы , т. е. произведение всех нормальных нильпотентных подгрупп группы ;

--- наибольшая нормальная -нильпотентная подгруппа группы ;

--- подгруппа Фраттини группы , т. е. пересечение всех максимальных подгрупп группы ;

--- наибольшая нормальная -подгруппа группы ;

--- -холлова подгруппа группы ;

--- силовская -подгруппа группы ;

--- дополнение к силовской -подгруппе в группе , т. е. -холлова подгруппа группы ;

--- нильпотентная длина группы ;

--- -длина группы ;

--- минимальное число порождающих элементов группы ;

--- цоколь группы , т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы ;

--- циклическая группа порядка .

Если и --- подгруппы группы , то :

--- является подгруппой группы ;

--- является собственной подгруппой группы ;

--- является нормальной подгруппой группы ;



--- ядро подгруппы в группе , т. е. пересечение всех подгрупп, сопряженных с в ;

--- нормальное замыкание подгруппы в группе , т. е. подгруппа, порожденная всеми сопряженными с подгруппами группы ;

--- индекс подгруппы в группе ;


;



--- нормализатор подгруппы в группе ;

--- централизатор подгруппы в группе ;

--- взаимный коммутант подгрупп и ;

--- подгруппа, порожденная подгруппами и .

Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы ;

--- является максимальной подгруппой группы .

Если и --- подгруппы группы , то:

--- прямое произведение подгрупп и ;

--- полупрямое произведение нормальной подгруппы и подгруппы ;

--- и изоморфны;

--- регулярное сплетение подгрупп и .

Подгруппы и группы называются перестановочными, если .

Группу называют:

-замкнутой, если силовская -подгруппа группы нормальна в ;

-нильпотентной, если -холлова подгруппа группы нормальна в ;

-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой; нильпотентной, если все ее силовские подгруппы нормальны; разрешимой, если существует номер такой, что ; сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.

-замкнутая группа --- группа, обладающая нормальной холловской -подгруппой.

-специальная группа --- группа, обладающая нильпотентной нормальной холловской -подгруппой.

-разложимая группа --- группа, являющаяся одновременно -специальной и -замкнутой.

Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

Добавлением к подгруппе группы называется такая подгруппа из , что


.


Цепь --- это совокупность вложенных друг в друга подгрупп.

Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.

Ряд подгрупп


называется:


субнормальным, если для любого ;

нормальным, если для любого ;

главным, если является минимальной нормальной подгруппой в для всех .

Класс групп --- совокупность групп, содержащая с каждой своей группой и все ей изоморфные группы.

-группа --- группа, принадлежащая классу групп .

Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.

Если --- класс групп, то:

--- множество всех простых делителей порядков всех групп из ;

--- множество всех тех простых чисел , для которых ;

--- формация, порожденная классом ;

--- насыщенная формация, порожденная классом ;

--- класс всех групп , представимых в виде



где , ;


;


--- класс всех минимальных не -групп, т. е. групп не принадлежащих , но все собственные подгруппы которых принадлежат ;

--- класс всех -групп из ;

--- класс всех конечных групп;

--- класс всех разрешимых конечных групп;

--- класс всех -групп;

--- класс всех разрешимых -групп;

--- класс всех разрешимых -групп;

--- класс всех нильпотентных групп;

--- класс всех разрешимых групп с нильпотентной длиной .

Если и --- классы групп, то:


.


Если --- класс групп и --- группа, то:

--- пересечение всех нормальных подгрупп из таких, что ;

--- произведение всех нормальных -подгрупп группы .

Если и --- формации, то:


--- произведение формаций;


--- пересечение всех -абнормальных максимальных подгрупп группы .

Если --- насыщенная формация, то:

--- существенная характеристика формации .

-абнормальной называется максимальная подгруппа группы , если , где --- некоторая непустая формация.

-гиперцентральной подгруппой в называется разрешимая нормальная подгруппа группы , если обладает субнормальным рядом таким, что

(1) каждый фактор является главным фактором группы ;

(2) если порядок фактора есть степень простого числа , то .

--- -гиперцентр группы ,



Введение


Известно, что любая конечная группа вида , где и --- -замкнутые подгруппы и индексы , не делятся на некоторое простое число , является -замкнутой.

В работе [38] В.Н. Тютянов доказал, что любая конечная группа вида , где и --- -нильпотентные подгруппы и индексы , не делятся на некоторое простое число , является -нильпотентной группой.

В связи с этим результатом можно сформулировать следующую проблему.

Проблема. Классифицировать наследственные насыщенные формации , содержащие любую группу , где и принадлежат и содержит некоторую силовскую подгруппу группы .

В данной главе в классе разрешимых групп для наследственной формации Фиттинга данная проблема решена полностью.



1. Описание -формаций Шеметкова


Важную роль при получении основных результатов данной главы сыграли формации Шеметкова, т. е. такие формации , у которых любая минимальная не -группа является либо группой Шмидта, либо группой простого порядка.

Впервые наследственные насыщенные разрешимые формации Шеметкова были описаны в работе [22]. Затем в работах [9] и [50, 51] были описаны произвольные наследственные насыщенные формации Шеметкова.

Определение. Формация называется -формацией Шеметкова, если любая минимальная не -группа --- либо группа простого порядка, либо группа Шмидта с нормальной -силовской подгруппой.

Приведем пример -формаций Шеметкова.

1.1 Пример. Если --- формация всех -нильпотентных групп, то --- -формация Шеметкова.

Пусть --- произвольная минимальная не -группа. Известно, что группа является разрешимой. Покажем, что является группой Шмидта с нормальной -силовской подгруппой. Так как не -нильпотентная группа, то . Пусть . Согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа, --- примарная -группа, , где --- максимальный внутренний локальный экран формации . Покажем, что . Действительно, если , то из того факта, что -нильпотентна, а значит и так же -нильпотентна, следует, что -нильпотентна, что невозможно. Известно, что формацию можно представить в виде . Согласно лемме 2.2.20, . Очевидно, что любая минимальная не -группа есть группа простого порядка . Итак, --- группа Шмидта. Пусть . Выше показано, что --- группа Шмидта с нормальной -силовской подгруппой. Теперь, в виду леммы 2.2.2 и леммы 4.1.1, является группой Шмидта с нормальной -силовской подгруппой. А это значит, что --- -формация Шеметкова.


Случайные файлы

Файл
70402.rtf
131634.rtf
183897.rtf
58637.rtf
30295.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.