Ответы на экзамен (Экстремумы функций)

Посмотреть архив целиком

Точки экстремума и экстремумы функций:

Функция u=f(Р) имеет максимум (минимум) в точке P0(x01,...,x0n), если существует такая окрестность точки P0, для всех точек Р (x1,...,xn)которой, отличных от точки P0, вы­полняется неравенство f(Р0)>f(Р) (соответственно f(Р0)экстремумом. Необходимое условие экстремума: Если дифферен­цируемая функция f(Р) достигает экстремума в точке P0, то в этой точке

f'xk(P0)=0 для всех k=1,2,...,n {1} или df(P0,x1,...,xn)=0 тождественно относительно ,x1,...,xn. Точки, в которых выполняются условия {1} наз. стационарными точками функции u=f(Р). Таким образом, если P0 – точка экстремума функции u=f(P), то либо P0 – стационарная точка, либо в этой точке функция не дифференцируема. Достаточные условия экстремума. Пусть P0(x01,...,x0n) – стационарная точка функции u=f(P), причем эта функция дважды дифференцируема в некоторой окрестности точки P0 и все её вторые частные производные непрерывны в точке P0. Тогда: (1) если второй дифференциал d2u(P0(x1,...,xn)) как функ­ция x1,...,xn имеет постоянный знак при всевозможных наборах значений x1,...,xn не равных одновременно нулю, то функция u=f(P) имеет в точке P0 экстремум, а именно – максимум при d2u(P0(x1,...,xn))<0 и минимум при d2u(P0(x1,...,xn))>0; (2) если d2u(P0(x1,...,xn)) является знакопеременной функ­цией x1,...,xn, т.е. принимает как положительные, так и отри­цательные значения то точка P0 не является точкой экстремума функции u=f(P); (3) если d2u(P0(x1,...,xn))0 или d2u(P0(x1,...,xn))0, причем, существуют такие наборы значений x1,...,xn не равных одновременно нулю, для которых значение второго дифференциала обращается в нуль, то функция, u=f(P) в точке P0 может иметь экстремум, но может и не иметь его (в этом случае для выяснения вопроса требуется дополнительное исследование). В частном случае функции двух переменных достаточные условия экстремума можно сформулировать следующим образом. Пусть P0(x0,y0) – стационарная точка функции z=f(x,y) причем эта функция дважды дифференцируема в некоторой окрестности точки P0 и все её вторые частные производные непрерывны в точке P0. Введем обозначения: A=f''xx(x0,y0), B=f''xx(x0,y0), C=f''xx(x0,y0) D=ACB2. Тогда: [1] если D>0, то функция z=f(х,у) имеет в точке Р0(x0,y0) экстремум, а именно – максимум при А<0 (С<0) и минимум при А>0 (С>0); [2] если D<0, то экстремум в точке Р0(x0,y0) отсутствует; [3] если D=0, то требуется дополнительное исследование.


Случайные файлы

Файл
17140-1.rtf
5506-1.rtf
71551.rtf
23900-1.rtf
27515-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.