Ответы на экзамен (Непрерывность дифференцируемой функции)

Посмотреть архив целиком

Непрерывность дифференцируемой функции:

Всякая функция, имеющая производ­ную (конечную!) в точке х, непрерывна в этой точке. В самом деле, пусть предел (1) существует в точке х и конечен. Этот факт можно записать следующим образом: y/x=f'(x)+ (x) (2), где (x)0 при х0, т.е. (x) есть бесконечно малая при x0. Из (2) следует: y=f'(х)х+x(x). Переходя в этом равенстве к пределу, когда x0, получим limx0y=0, это показ., что f непрерывна в точке х.


Случайные файлы

Файл
175430.rtf
17547.rtf
50066.rtf
182335.rtf
23550-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.