Алгебраические группы матриц (85497)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет

имени Франциска Скорины"


Математический факультет

Кафедра алгебры и геометрии






Курсовая работа


АЛГЕБРАИЧЕСКИЕ ГРУППЫ МАТРИЦ




Исполнитель:

студентка группы H.01.01.01 М-42

Мариненко В.В.


Научный руководитель:

доктор физико-математических наук,

профессор Скиба С.В.





Гомель 2003


Содержание


Введение

1. Алгебраические группы матриц

1.1 Примеры алгебраических групп матриц

1.2 О полугруппах

1.3 Компоненты алгебраической группы

1.4 О -группах

2 Ранг матрицы

2.1 Возвращение к уравнениям

2.2 Ранг матрицы

2.3 Критерий совместности

3 Линейные отображения. Действия с матрицами

3.1 Матрицы и отображения

3.2 Произведение матриц

3.3 Квадратные матрицы

Заключение

Список использованных источников


Введение


Множество матриц -ой степени над будем рассматривать как аффинное пространство с имеющейся на ней полиномиальной топологией. Алгебраические группы матриц определяются как невырожденные части алгебраических множеств из , являющиеся группами относительно обычного матричного умножения. Простейший пример такой группы - общая линейная группа . В настоящем параграфе мы начнем систематическое изучение алгебраических матричных групп.

Все топологические понятия относятся к полиномиальной топологии; черта обозначает замыкание в , диез - замыкание в , бемоль - взятие невырожденной части, т. е. - совокупность всех невырожденных матриц из . Иногда, допуская вольность, мы употребляем для групп те же понятия, что и для подлежащих алгебраических множеств, - например, говорим об общих точках групп; это не должно вызывать недоразумений.


1. Алгебраические группы матриц


1.1 Примеры алгебраических групп матриц


Классические матричные группы - общая, специальная, симплектическая и ортогональная:



где

- единичная матрица и штрих обозначает транспонирование.

Диагональная группа , группы клеточно-диагональных матриц данного вида. Треугольная группа (для определенности --- с нижним нулевым углом), унитреугольная группа (треугольные матрицы с единичной диагональю), группы клеточно-треугольных матриц данного вида.

Централизатор произвольного множества из в алгебраической группе , нормализатор замкнутого множества из в .

Пересечение всех алгебраических групп, содержащих данное множество матриц из --- алгебраическая группа. Она обозначается и называется алгебраической группой, порожденной множеством .

Каждую алгебраическую линейную группу из можно изоморфно --- в смысле умножения и полиномиальной топологии --- отождествить с замкнутой подгруппой из в силу формулы



Такое отождествление позволяет при желании ограничиться рассмотрением только таких групп матриц, которые сами являются алгебраическими множествами (а не их невырожденными частями). Это дает другое оправдание тем вольностям в терминологии, которые упоминались в начале параграфа.

Множество всех матриц из , оставляющих инвариантной заданную невырожденную билинейную форму на .

Пусть --- алгебра над конечной размерности (безразлично, ассоциативная или нет), --- группа всех ее автоморфизмов. Фиксируя в какую-нибудь базу и сопоставляя автоморфизмам алгебры их матрицы в этой базе, мы получим на строение алгебраической группы. Действительно, пусть



т. е. --- структурные константы алгебры . Пусть далее



где . Тогда задается в матричных координатах очевидными полиномиальными уравнениями, вытекающими из соотношений



Указать в приведенных выше примерах определяющие уравнения, найти общую точку, если она есть.

В дальнейшем нам встретится еще много примеров и конструкций алгебраических матричных групп.


1.1.1 Если матричная группа содержит алгебраическую подгруппу конечного индекса, то сама алгебраическая.

Доказательство. Пусть - аннулятор группы в , - его корень в . Надо показать, что . Пусть, напротив, . Пусть - смежные классы по . Для каждого выберем многочлен



и положим



Очевидно, , . Получили противоречие.

Пусть --- алгебраическая группа, , --- подмножество и замкнутое подмножество из . Тогда множества



где , замкнуты. Если тоже замкнуто и --- общее поле квазиопределения для , , , то , , квазиопределены над . В частности, если существует хотя бы одно с условием (соответственно, , ), то можно считать, что (см. 7.1.5).

Если на множестве выполняется теоретико-групповое тождество , то оно выполняется и на его замыкании . В частности, коммутативность, разрешимость, нильпотентность матричной группы сохраняются на ее замыкании в полиномиальной топологии.


1.2 О полугруппах


Определим действие элементов из на рациональные функции из , , полагая



Для каждого отображение (сдвиг аргумента) есть автоморфизм поля . Отображение есть изоморфизм полной линейной группы в группу автоморфизмов расширения .

Имеет место следующее предложение.


1.2.1 Все замкнутые (в полиномиальной топологии) полугруппы из являются группами. Более общно: замыкание произвольной полугруппы --- группа. Более точно: если --- аннулятор в , то совпадает с



Здесь вместо можно написать .

Доказательство. Во-первых, и, значит, . Действительно, если , и , то , т. е. . Подпространство многочленов из степени отображается оператором на себя, так как оно конечномерно, а опрератор обратим. Но тогда и всё отображается на себя, как объединение всех .

Во-вторых, , т. е. для каждого . Действительно, пусть . По уже доказанному, . Найдём с условием . Тогда .

В-третьих, , т. е. для всех , . Действительно, . Предложение доказано.

Таким образом, теория алгебраических полугрупп из исчерпывается теорией алгебраических групп.

Отметим ещё одно полезное предложение.


1.2.2 Пусть алгебраическая группа неприводима, т. е. --- многообразие, --- густое подмножество, плотное в . Тогда каждый элемент является произведением двух элементов из ; в частности, если --- подгруппа, то она совпадает с .

Доказательство. Множества и тоже густые и плотные, поэтому пересечение непусто (см. п. 8.2).

Если --- полугруппа из , то .


1.3 Компоненты алгебраической группы


Пусть --- алгебраическая группа матриц. Невырожденные части компонент её подлежащего многообразия называеются компонентами группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия.


1.3.1 Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами группы в полиномиальной топологии). --- единственная связная замкнутая подгруппа конечного индекса в . Аннулятор компоненты связан с аннулятором всей группы следующим образом:

для некоторого , зависящего от

, где --- аннулятор единицы в , --- некоторый многочлен из .

Доказательство. а) Пусть --- общее поле определения всех компонент группы . Пусть , содержат единицу , , --- их независимые общие точки над и , . Имеем специализации



над , откуда , , . Этим доказана единственность компоненты .

б) Очевидно, что отображения



являются гомеоморфизмами пространства . Так как инвариантна относительно них, то --- нормальная подгруппа группы .

в) Пусть . Тогда при фиксированном --- снова все компоненты группы . В частности, , . Этим доказано, что --- смежные классы по и, значит, связные компоненты группы .

г) Если --- связная замкнутая подгруппа группы , то, предыдущему, . Если, кроме того, конечного индекса, то она той же размерности, что и , потому совпадает с .

д) Для каждого возьмем многочлен



Пусть --- точка из , в которой . Рассмотрим многочлен



Он искомый. В самом деле, очевидно, . Оба включения справа налево очевидны (использовать простоту идеала ). Остается доказать включение



Пусть , . Имеем:



Если , то , если же , , то . В любом случае . Следовательно, . Теорема доказана.

Мы видим, в частности, что для алгебраической группы неприводимость и связность в полиномиальной топологии --- одно и то же; в дальнейшем мы будем пользоваться только вторым термином, чтобы избежать путаницы с понятием матричной приводимости групп (к полураспавшейся форме).

Доказать, что связанная компонента единицы алгебраической группы содержится в любой замкнутой подгруппе конечного индекса.

Подгруппа алгебраической группы тогда и только тогда замкнута, когда замкнуто её пересечение со связной компонентой единицы .


Случайные файлы

Файл
50310.rtf
70944-1.rtf
26551-1.rtf
68545.doc
41984.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.