Ряды Фурье. Численные методы расчета коэффициентов (85459)

Посмотреть архив целиком

Ряды Фурье. Численные методы расчета коэффициентов

Курсовая работа студента гр. МТ-31

Нургалиев А. З.

Иновационный евразийский университет

Павлодар 2006 год.

1. Введение.

В курсовой работе рассмотрено различные методы определения коэффициентов рядов Фурье. При разработки данного вопроса было рассмотрено тригонометрическая интерполяция теории и дискретное преобразование рядов Фурье. Также была разработана программа для расчетов коэффициентов на ЭВМ.

Целью этой работы является рассмотрение возможности разложения функции в ряд Фурье и актуальность применения этого разложения в инженерно-технических расчетах, оценить ее практическую и теоретическую значимость. Главной задачей является нахождение более оптимального решения задачи определения коэффициентов на ЭВМ, позволяющего минимизировать использование системных ресурсов, сократить время вычислений с наименьшей погрешностью.

2. Разложение периодической функции.

В науке и технике часто приходится иметь дело с периодическими явлениями , т.е. такими, которые воспроизводятся в прежнем виде через определённый промежуток времени Т, называемый периодом. Примером может служить установившееся движение паровой машины, которая по истечению определённого числа оборотов снова проходит через свое начальное положение., затем явление переменного тока и т. п. Различные величины, связанные с рассматриваемым периодическим явлением, по истечении периода Т возвращаются к своим прежним значениям и представляют, следовательно, периодические функции от времени t, характеризуемые равенством

Таковы например, сила и напряжение переменного тока или – пример паровой машины – путь, скорость и ускорение крейцкопфа, давление пара, касательное усилие в пальце кривошипа и т. д.

Простейшей из периодических функций (если не считать постоянной) является синусоидальная величина: , где

есть «частота», связанная с периодом Т соотношением:

(1)

Из подобных простейших периодических функций могут быть составлены и более сложные. Наперед ясно, что составляющие синусоидальные величины должны быть разных частот, ибо, как легко убедится, сложение синусоидальных величин одной и той же частоты не дает ничего нового, поскольку приводит опять к синусоидальной величине, притом той же частоты. Наоборот, если сложить несколько величин вида

,

,

,

, …, (2)

которые , если не считать постоянной, имеют частоты

, 2

, 3

, …,

кратные наименьшей из них, , и периоды

Т, ,

, …,

то получится периодическая функция (с периодом Т), но уже существенно отличная от величин типа (2).

Для примера мы воспроизводим здесь сложение трех синусоидальных величин:

;

график этой функции по своему характеру уже значительно разнится от синусоиды. Еще в большей степени это имеет место для суммы бесконечного ряда, составленного из величин вида (2).

Теперь естественно поставить обратный вопрос: можно ли данную периодическую функцию периода Т представить в виде суммы конечного или хотя бы бесконечного множества синусоидальных величин вида (2)? Как увидим ниже, по отношению к довольно широкому классу функций на этот вопрос можно дать утвердительный ответ, но только если привлечь именно всю бесконечную последовательность величин (2). Для функций этого класса имеет место разложение в «тригонометрический ряд»:

,

причем суть постоянные, имеющие особые значения для каждой такой функции, а частота

дается формулой (1).

Геометрически это означает, что график периодической функции получается путем наложения ряда синусоид. Если же истолковать каждую синусоидальную величину механически как представляющую гармоническое колебательное движение, то можно также сказать, что здесь сложное колебание, характеризуемое функцией или просто ее гармониками (первой, второй и т. д.). Самый же процесс разложения периодической функции на гармоники носит название гармонического анализа.

Если за независимую переменную выбрать

,

то получится функция от x:

,

тоже периодическая, но со стандартным периодом . Разложение же (3) примет вид

. (4)

Развернув члены этого ряда по формуле для синуса суммы и положив

(n=1,2,3,…),

мы придем к окончательной форме тригонометрического разложения:

,

в которой мы всегда и будем его рассматривать. Здесь функция от угла x, имеющая период , оказывается разложенной по косинусам и синусам углов, кратных x.

Мы пришли к разложению функции в тригонометрический ряд, отправляясь от периодических, колебательных явлений и связанных с ними величин. Важно отметить, однако, уже сейчас, что подобные разложения часто оказываются полезными и при исследовании функции, заданных лишь в определенном конечном промежутке и вовсе не порожденных никакими колебательными явлениями.

3.1.1. Схема Рунге.

Разложение функции в ряд Фурье, или гармонический анализ, оказывается нужным во многих чисто практических вопросах машиноведения, электротехники и пр. Но в этих случаях очень редко приходится непосредственно пользоваться формулами Эйлера-Фурье:

,

,

,

(10)

для вычисления коэффициентов разложения. Дело в том, что функции, которые нужно подвергнуть гармоническому анализу, обыкновенно задаются таблицей своих значений или графиком. Таким образом, аналитического выражения функции в нашем распоряжении нет; иногда к самому гармоническому анализу прибегают именно для того, чтобы таким путем получить хотя бы приближенное аналитическое выражение для функции. В этих условиях для вычисления коэффициентов Фурье нужно обратится к приближенным методам. Разумеется, на практике приходится пользоваться лишь немногими первыми членами тригонометрического разложения. Коэффициенты ряда Фурье в большинстве случаев убывают, а с ними быстро падает и влияние далеких гармоник.

Обычно дается (или снимается с графика) ряд равноотстоящих ординат, т.е. ряд значений функции , отвечающих равноотстоящим значениям аргумента

. По этим ординатам величины (10) можно приближенно вычислить, пользуясь методами изложенными выше. Но вычисления здесь оказываются довольно громоздкими, и для того чтобы упростить и, так сказать, автоматизировать их, придумано много различных приемов, один из которых мы и изложим.

3.1.1.1. Схема для двенадцати ординат.

Пусть, скажем, промежуток от 0 до разделен на k равных частей и пусть известны ординаты

,

отвечающие точкам деления

.

тогда по формуле трапеции имеем (конечно, лишь приближенно!):

.

Ввиду периодичности нашей функции , значение

можно написать и так:

.

Аналогично, применяя формулу трапеции к другим интегралам (10), найдем:

или

,

а также

.

Положим сначала k=12 и будем исходить из двенадцати ординат

,

отвечающих двенадцати ординатам равноотстоящих значениям аргумента:

,

Все множители, на которые придется умножить эти ординаты, по формулам приведения сведутся к следующим:

.

Именно легко проверить, что

(11)

Например,

что совпадает с написанным выше выражением.

Для того чтобы свести выкладки (особенно - умножение) к минимуму, их производят по определенной схеме, предложенной Рунге.

Сначала выписываются в указанном ниже порядке ординаты и над каждой парой подписанных одна под другой ординат производят сложение и вычитание:


ординаты



суммы

разности




Затем аналогично выписывают эти суммы и разности и снова подвергают их сложению и вычитанию:


суммы


суммы

разности


разности


суммы

разности



Теперь, получив после всех этих сложений и вычитаний ряд величин , мы можем следующим образом выразить через них искомые коэффициенты:

(12)

Нетрудно убедится, что эти формулы в точности соответствуют формулам (11).

3.1.1.2. Примеры.

1) Дана некоторая диаграмма касательных усилий (на пальце кривошипа) для некоторой паровой машины. В связи с вопросом о крутильных колебаниях вала представляет интерес выделить гармонические составляющие касательного усилия Т как функции от угла поворота кривошипа. Сняв с графика двенадцать равноотстоящих ординат, произведем гармонический анализ по указанной схеме:


T

-7200

-300

7000

4300

0

-5200

-7400


250

4500

7600

3850

-2250


U

-7200

-50

11500

11900

3850

-7450

-7400

V


-550

2500

-3300

-3850

-2950



Случайные файлы

Файл
12575.rtf
121953.doc
ref-18686.doc
101638.rtf
93266.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.