Многочлены над кольцом классов вычетов (75634-1)

Посмотреть архив целиком

Многочлены над кольцом классов вычетов

Курсовая работа по математике

Ставропольский государственный институт

Ставрополь, 2004 г.

1. Определение многочлена.

В школьной алгебре одночленом от некоторой буквы x называется алгебраическое выражение вида , где a - некоторое число, x - буква, m - целое неотрицательное число. Одночлен

отождествляется с числом a, так что числа рассматриваются как одночлены. Далее, одночлены называются подобными, если показатели при букве x одинаковы. Подобные одночлены складываются по правилу

, называемому приведением подобных членов. Многочленом или полиномом называется алгебраическая сумма одночленов. В полиноме порядок слагаемых безразличен, и подобные одночлены можно соединить, согласно приведению подобных членов. Поэтому любой полином можно записать в канонической форме

, с расположением членов в порядке убывания показателей. Иногда оказывается удобным записывать члены полинома в порядке возрастания показателей.

Буква x обычно обозначает произвольное число. Иногда x считают переменной, тогда полином задает функцию от x, называемую целой рациональной функцией.

Два полинома называются формально равными, если они, в канонической записи, составлены из одинаковых одночленов. Ясно, что формально равные полиномы равны тождественно, т.е. принимают одинаковые значения при каждом значении буквы x. Обратное утверждение, вообще говоря, неверно.

Наша задача сейчас состоит в том, чтобы несколько расширить понятие полинома. Пусть K - некоторое коммутативное ассоциативное кольцо с единицей, и пусть x - буква, посторонняя для кольца K. Одночленом от буквы x с коэффициентом из K называется выражение , где

, m - целое неотрицательное число. Считается, что

, так что элементы кольца K являются одночленами частного вида. Выражение

рассматривается как формальная запись. Для одночленов естественным образом определяются действие приведения подобных членов

и действия умножения

. Формальное выражение, состоящее из нескольких одночленов, соединенных знаком +, называется многочленом или полиномом от x с коэффициентами из K. Предполагается, что порядок следования одночленов безразличен, подобные одночлены можно соединять, а также вставлять и выбрасывать одночлены с нулевыми коэффициентами. Без нарушения общности можно считать полином записанным в канонической форме

(т.е. в порядке убывания степеней) или в порядке возрастания степеней

.

2. Операции над многочленами.

Два полинома считаются равными, если они составлены в канонической записи из одинаковых одночленов, т.е. в том и только в том случае, если

.

Суммой двух полиномов называется полином, получающийся посредством объединения одночленов, составляющих слагаемые. Разумеется, после объединения следует привести подобные члены. Таким образом,

, где

. (Если многочлены f(x) и g(x) имеют разное число одночленов, то, подписав необходимое число одночленов с нулевыми коэффициентами к одному из них, в котором число одночленов меньше, можно добиться их равенства в обоих многочленах). Поэтому складывать можно многочлены с разным числом одночленов. Например,

,

, преобразуем g(x) к виду

добавив два нулевых одночлена, суммой f(x) и g(x) будет многочлен

) Из соотношения

(1)

легко видеть, что операция суммирования (сложения) многочленов обладает такими же свойствами, что и операция сложения элементов кольца K, т.е. ассоциативна, коммутативна; полином, все коэффициенты которого нули, является нейтральным элементом сложения полиномов; для каждого полинома существует ему противоположный, противоположный к полиному является полином

. Итак, множество полиномов с операцией сложения образует коммутативную группу.

Произведением двух полиномов называется полином, составленный из произведений всех членов первого сомножителя на все члены второго. Здесь снова возможно приведение подобных членов. Таким образом,

. Коэффициент

при

равен

, если условиться считать, что

при

и

при

. Принцип вычисления коэффициента

прост: приводятся такие подобные слагаемые при произведении одночленов

и

, которые дают в результате одночлены вида

, т.е.

- сумма всевозможных произведений

и

при

. Поэтому верно равенство

. (2)

Умножение многочленов ассоциативно. Это доказывается следующим образом: если помимо многочленов и

дан еще многочлен

,

, то коэффициентом при

,

в произведении

будет служить элемент

, а в произведении

- равное ему число

.

Умножение многочленов дистрибутивно относительно сложения, это вытекает из равенства , так как левая часть этого равенства является коэффициентом при

в многочлене

, а правая часть - коэффициентом при той же степени переменной

в многочлене

.

Нетрудно видеть, что многочлен (где 1 - единица кольца K) играет роль единицы при умножении многочленов. Таким образом, множество полиномов от буквы x с коэффициентами из кольца составляет кольцо по отношению к выше определенным операциям сложения и умножения полиномов (относительно сложения - это коммутативная группа; умножение ассоциативно и дистрибутивно относительно сложения; существует единичный многочлен). Кольцо это коммутативно и ассоциативно. Оно называется кольцом полиномов от буквы x над кольцом K и обозначается K[x].

В данном выше определении одночлена и полинома имеется одно сомнительное место. Именно, было сказано, что x есть буква, посторонняя для кольца K, и не было объяснено, что это значит. Сказать, что x не принадлежит кольцу K - это сказать слишком мало, так как при этом не исключаются нежелательные возможности или

и т.д. Однако мы можем избавиться от "сомнительной" буквы x. Для этого рассмотрим бесконечные последовательности

элементов кольца K, в которых все элементы, начиная с некоторого, равны нулю. Вводим теперь определения равенства и основных действий.

тогда и только тогда, когда

, i = 0, 1, ..., k, ...

. Ясно, что требование об обращении в нуль всех членов, начиная с некоторого, сохраняется при сложении.

. Здесь тоже сохраняется требование об обращении в нуль всех членов, начиная с некоторого места.

Легко проверяется коммутативность и ассоциативность сложения и умножения и дистрибутивность умножения со сложением. Далее ясно, что

и

, и, более общо,

.

4. отождествляется с последовательностью

.

Рассмотрим теперь последовательность (0, 1, 0, ..., 0, ...), обозначив ее буквой x. Тогда x2 = (0, 0, 1, 0, ..., 0, ...) и т.д. Поэтому

. Таким образом, мы построили элементы кольца K[x] полиномов.

Итак, при определении многочлена

(3)

существенны лишь коэффициенты , и поэтому можно было бы писать вместо (1) последовательность

. Однако, в конечном счете, запись многочлена в виде выражения (3) оказывается более удобной.

Пусть , причем

. Одночлен

называется высшим (старшим) членом полинома f(x) и показатель n называется степенью f(x) и обозначается deg f. Нулевой полином не имеет высшего члена в смысле данного определения и считается, что он равен нулю. Коэффициент

называется свободным членом. Многочлен, старший коэффициент которого равен единице, называется нормированным.

При сложении многочленов и

по формуле (1) мы видим, что формула для суммы не содержит членов, степень которых выше, чем

, а формула (2) для произведения - членов, степень которых выше, чем n + m. Отсюда следует, что

, (4)

. (5)

3. Кольцо многочленов над областью целостности.

Далее будем рассматривать только многочлены с коэффициентами из области целостности K (кольцо без делителей нуля называют областью целостности), т.е. из кольца K, в котором произведение двух элементов может равняться нулю, если только один из сомножителей равен нулю. Это всегда будет подразумеваться, даже если не будет оговорено специально.

При произведении многочленов степени n и

степени m старший член, как следует из формулы (2), равен

(это коэффициент при

). Так как в кольце нет делителей нуля, то

и, значит,

. Из нашего рассуждения следует также, что

. (6)

Эта формула является уточнением неравенства (5) для случая, когда в кольце K нет делителей нуля. Формула (6) также справедлива и тогда, когда один из многочленов f(x), g(x) или они оба равны нулю. Итак, произведение двух ненулевых многочленов - ненулевой многочлен, поэтому справедлива следующая теорема:

Теорема 1. Кольцо многочленов над областью целостности само является областью целостности.

Данное нами алгебраическое определение многочлена не содержит никакого упоминания о функциях. Тем не менее, с каждым многочленом над областью целостности K можно естественным образом связать функцию, которая определена на K и принимает значения в K.

Пусть - многочлен с коэффициентами из K. Для любого

положим

, (7)

где выражение в правой части понимается как результат операций в кольце K. Получаемый при этом элемент называется значением многочлена f(x) в точке x0. (Слово "точка" употребляется по аналогии со случаем


Случайные файлы

Файл
107355.rtf
77990.doc
151893.rtf
182844.rtf
2632.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.