Решение задач линейной оптимизации симплекс – методом (84057)

Посмотреть архив целиком

Решение задач линейной оптимизации симплекс – методом.

Курсовая работа по дисциплине «Численные методы оптимизации»

Выполнил: ст.гр.4408 Калинкин А.А.

Казанский Государственный Университет им. А.Н. Туполева.

г. Казань 2001г.

1. Постановка задачи

1.1. Физическая (техническая) постановка задачи

Нефтеперерабатывающий завод получает четыре полуфабриката:

400 тыс. л. алкилата;

250 тыс. л. крекинг-бензина;

350 тыс. л. бензина прямой перегонки;

250 тыс. л. изопентона;

В результате смешивания этих четырёх компонентов в разных пропорциях образуются три сорта авиационного бензина:

Бензин А – 2 : 3 : 5 : 2 ;

Бензин В – 3 : 1 : 2 : 1 ;

Бензин С – 2 : 2 : 1 : 3 ;

Стоимость 1 тыс.л. указанных сортов бензина:

Бензин А – 120 руб.

Бензин Б – 100 руб.

Бензин С – 150 руб.

Необходимо определить план смешения компонентов, при котором будет достигнута максимальная стоимость все продукции. При следующих условиях:

Бензина каждого сорта должно быть произведено не менее 300 тыс..л.

Неиспользованного крекинг бензина должно остаться не более 50 тыс.л.

Сводная таблица условий задачи:


Компоненты, используемые для производства трёх видов бензина.

Сорта производимого бензина

Объем ресурсов

(тыс. л)

А

В

С

Алкилат

400

Крекинг-бензин

250

Бензин прямой перегонки

300

Изопентат

250

Цена бензина (рублей за 1 тыс.л.)

120

100

150


1.2. Математическая постановка задачи

Исходя из условий задачи, необходимо максимизировать следующую целевую функцию:

(1.2.1)

при ограничениях

(1.2.2)

, где

В этих выражениях:

- объемы бензина А-го, В-го и С-го сорта соответственно.

Тогда

объёмная доля первой компоненты (алкилата) в бензине А.

объёмная доля первой компоненты (алкилата) в бензине В.

объёмная доля первой компоненты (алкилата) в бензине С.

и т.д.

Целевая функция выражает стоимость всей продукции в зависимости от объема производимого бензина каждого сорта. Таким образом, для получения максимальной стоимости продукции необходимо максимизировать целевую функцию (1.2.1) с соблюдением всех условий задачи, которые накладывают ограничения (1.2.2) на .

2. Приведение задачи к канонической форме

Задача линейного программирования записана в канонической форме, если она формулируется следующим образом.

Требуется найти вектор , доставляющий максимум линейной форме

(2.1)

при условиях

(2.2)

(2.3)

где

Перепишем исходную задачу (1.2.1) - (1.2.2):

(2.4)

при ограничениях

(2.5)

, где (2.6)

В канонической форме задачи линейного программирования необходимо, чтобы все компоненты искомого вектора Х были неотрицательными, а все остальные ограничения записывались в виде уравнений. Т.е. в задаче обязательно будут присутствовать условия вида (2.3) и 8 уравнений вида (2.2), обусловленных неравенствами (2.5), (2.6).

Число ограничений задачи, приводящих к уравнениям (2.2) можно уменьшить, если перед приведением исходной задачи (2.4) - (2.6) к канонической форме мы преобразуем неравенства (2.6) к виду (2.3). Для этого перенесем свободные члены правых частей неравенств (2.6) в левые части. Таким образом, от старых переменных перейдем к новым переменным, где :

, .

Выразим теперь старые переменные через новые

, (2.7)

и подставим их в линейную форму (2.4) и в неравенства (2.5), (2.6). Получим


, где .

Раскрывая скобки и учитывая, что

(2.8),

можем окончательно записать:


(2.9)


(2.10)

, где (2.11)

Путем несложных преобразований задачу (1.2.1), (1.2.2) свели к задаче (2.9) - (2.11) с меньшим числом ограничений.

Для записи неравенств (2.10) в виде уравнений введем неотрицательные дополнительные переменные , и задача (2.9) - (2.11) запишется в следующей эквивалентной форме:

(2.12)

(2.13)

, где

Задача (2.12), (2.13) имеет каноническую форму.

3. Нахождение начального опорного плана с помощью L-задачи

Начальный опорный план задачи (2.1) - (2.3), записанной в канонической форме, достаточно легко может быть найден с помощью вспомогательной задачи (L-задачи):

(3.1)

(3.2)

(3.3)

Начальный опорный план задачи (3.1) - (3.3) известен. Он состоит из компонент

и имеет единичный базис Б = = E.

Решая вспомогательную задачу первым алгоритмом симплекс-метода (описание алгоритма приводится в п.4), в силу ограниченности линейной формы сверху на множестве своих планов () получим, что процесс решения через конечное число шагов приведет к оптимальному опорному плану вспомогательной задачи.

Пусть - оптимальный опорный план вспомогательной задачи. Тогда является опорным планом исходной задачи. Действительно, все дополнительные переменные . Значит, удовлетворяет условиям исходной задачи, т.е. является некоторым планом задачи (2.12) - (2.13). По построению план является также опорным.

3.1. Постановка L-задачи

Вспомогательная задача для нахождения начального опорного плана задачи (2.12) - (2.13) в канонической форме состоит в следующем.

Требуется обратить в максимум

при условиях

, где .

рассматривая в качестве исходного опорного плана план

Здесь добавление только одной дополнительной переменной (вместо пяти) обусловлено тем, что исходная задача уже содержит четыре единичных вектора условий А4, А5, А6, А7.

3.2. Решение L-задачи

Решение L-задачи будем проводить в соответствии с первым алгоритмом симплекс-метода (описание алгоритма приводится в п.4). Составим таблицу, соответствующую исходному опорному плану (0-й итерации).

Т.к. Б0 = - базис, соответствующий известному опорному плану, является единичной матрицей, то коэффициенты разложения векторов Аj по базису Б0

.

Значение линейной формы и оценки для заполнения (m+1)-й строки таблицы определяются следующими соотношениями:

,

.

Отсюда получим:


;

;

;

.


Весь процесс решения задачи приведен в табл. 3.2.1, которая состоит из 2 частей, отвечающих 0-й (исходная таблица) и 1-й итерациям.

Заполняем таблицу 0-й итерации.

Среди оценок имеются отрицательные. Значит, исходный опорный план не является оптимальным. Перейдем к новому базису. В базис будет введен вектор А1 с наименьшей оценкой . Значения t вычисляются для всех позиций столбца t (т.к. все элементы разрешающего столбца положительны). Наименьший элемент достигается на пятой позиции базиса. Значит, пятая строка является разрешающей строкой, и вектор А9 подлежит исключению из базиса.

Составим таблицу, отвечающую первой итерации.

В столбце Бх, в пятой позиции базиса место вектора А9 занимает вектор А1. Соответствующий ему коэффициент линейной формы С41 = 0 помещаем в столбец Сх. Главная часть таблицы 1 заполняется по данным таблицы 0 в соответствии с рекуррентными формулами. Так как все , то опорный план является решением L-задачи. Наибольшее значение линейной формы равно .


Таблица 3.2.1


3.3. Формирование начального опорного плана исходной задачи линейного программирования из оптимального плана L-задачи

Поскольку , где - оптимальный опорный план L-задачи, то является начальным опорным планом исходной задачи (2.12) - (2.13).

4. Решение исходной задачи I алгоритмом симплекс-метода

Описание I алгоритма

Симплекс-метод позволяет, отправляясь от некоторого исходного опорного плана и постепенно улучшая его, получить через конечное число итераций оптимальный план или убедиться в неразрешимости задачи. Каждой итерации соответствует переход от одной таблицы алгоритма к следующей. Таблица, отвечающая опорному плану в ν-й итерации имеет вид табл. 4.1.

Таблица 4.1





C


N

B

t

1



l


m


m+1


Случайные файлы

Файл
16579-1.rtf
167965.doc
36924.rtf
111951.rtf
30760.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.