Решение дифференциальных уравнений. Обзор (50192)

Посмотреть архив целиком

Нижегородский государственный технический университет

Павловский филиал

Кафедра «Общеобразовательные и общепрофессиональные дисциплины»









КУРСОВАЯ РАБОТА

по информатике

на тему:

«Решение дифференциальных уравнений. Обзор»



Выполнила: Аверина Л.А

Группа. ТМв 151001-09

Проверила: Ловыгина М.Б








Павлово 2010г.


Оглавление


Введение

1 Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

1.2 Задача Коши

1.3 Метод Эйлера

1.4 Модифицированный метод Эйлера

1.5 Практическая часть

2 Решение дифференциальных уравнений с помощью Mathcad

2.1 Метод Эйлера

2.2 Метод Эйлера с шагом h/2

2.3 Метод Рунге – Кутты

Заключение

Список литературы



Введение


Уравнение называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид

Решением этого уравнения на интервале I=[a,b] называется функция u(x).

Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0.

Таким образом, численные методы позволяют вместо нахождения функции y=F(x) (3) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели. Например задачи электродинамики системы взаимодействующих тел (в модели материальных точек), задачи химической кинетики, электрических цепей. Ряд важных уравнений в частных производных в случаях, допускающих разделение переменных, приводит к задачам для обыкновенных дифференциальных уравнений – это, как правило, краевые задачи (задачи о собственных колебаниях упругих балок и пластин, определение спектра собственных значений энергии частицы в сферически симметричных полях и многое другое)



1 Обзор методов решения в Excel


1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка


Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y' = F(x,y) (1) является метод четвертого порядка, в котором вычисления производятся по формуле:


yk+1 = yk +(k1 +2k2 +2k3 +k4 )/6, (2)

где

k1 = Fk h = F(xk , yk )h

k2 = F(xk +h/2, yk +k1 /2)h

k3 = F(xk +h/2, yk +k2 /2)h

k4 = F(xk +h, yk +k3 )h,

k = 0, ..., n-1

h = (xf -x0 )/n (3)


1.2 Задача Коши


Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:


, (4)


Разобьём промежуток [a,b] на N частей . Обозначим , где u(x) –точное решение задачи Коши, и через значения приближенного решения в точках . Существует 2 типа численных схем :

  1. явные: ) (5)

  2. неявные: (6)


Здесь F некоторая функция, связывающая приближения. В явных схемах приближенное значение в точке определяется через некоторое число k уже определённых приближенных значений. В неявных схемах определяется не рекурентным способом, как в явных схемах, а для его определения возникает уравнение, поскольку равенство (6) представляет из себя именно уравнение на . Явные схемы проще, однако зачастую неявные схемы предпочтительнее


1.3 Метод Эйлера


Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что


уi=F(xi)(i=1,2,…, n) и F(x0)=y0. (7)

Таким образом, численные методы позволяют вместо нахождения функции У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка (7) с начальным условием

x=x0, y(x0)=y0 (8)


Требуется найти решение уравнения (7) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0, х1, х2,…, хn, где xi=x0+ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi)yi вычисляются последовательно по формулам уi+hf(xi, yi) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00, у0), заменяется ломаной М0М1М2… с вершинами Мi(xi, yi) (i=0,1,2,…); каждое звено МiMi+1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (7), которая проходит через точку Мi. Если правая часть уравнения (7) в некотором прямоугольнике R{|x-x0|a, |y-y0|b}удовлетворяет условиям:


|f(x, y1)- f(x, y2)|  N|y1-y2| (N=const), (9)

|df/dx|=|df/dx+f(df/dy)|  M (M=const),


то имеет место следующая оценка погрешности:


|y(xn)-yn|  hM/2N[(1+hN)n-1], (10)


где у(хn)-значение точного решения уравнения (7) при х=хn, а уn- приближенное значение, полученное на n-ом шаге.

Формула (13) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn* оценивается формулой


|yn-y(xn)||yn*-yn|. (11)

Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.


1.4 Модифицированный метод Эйлера


Рассмотрим дифференциальное уравнение (7) y/=f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.


Рисунок 1 Метод Эйлера в графическом виде


Получаем точку Мккк). Через Мк проводим касательную:


у=ук=f(xk,yk)(x-xk)


Делим отрезок (хкк1) пополам


xNk/=xk+h/2=xk+1/2 (12)

yNk/=yk+f(xk,yk)h/2=yk+yk+1/2


Получаем точку Nk/. В этой точке строим следующую касательную:


y(xk+1/2)=f(xk+1/2, yk+1/2)=αk (13)


Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:


ук+1к+αкh

xk+1=xk+h

αk=f(xk+h/2, yk+f(xk,Yk)h/2) (14)

yk=yk-1+f(xk-1,yk-1)h (14)


(14)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (11) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:


| ук*-у(хк)|=1/3(yk*-yk), (15)


где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена


y/=z (16)

z/=f(x,y,z)


Тем самым преобразуются начальные условия


y(x0)=y0, z(x0)=z0, z0=y/0 (17)


1.5 Практическая часть


Здесь решается уравнение dy/dx = 2x-y+x2 на интервале [0,2], начальное значение y(0)=0, для оценки точности задано также точное решение в виде функции u(x)=x2. Оценка погрешности делается в нормеL1, как и принято в данном случае


Рисунок 2


2 Решение дифференциальных уравнений с помощью Mathcad


Mathcad имеет ряд встроенных функций, предназначенных для решения обыкновенных дифференциальных уравнений (ОДУ). При решении ОДУ искомой величиной является функция. При использовании любых методов численного интегрирования необходимо, чтобы были заданы по крайней мере следующие величины:

начальные условия;

набор точек в которых нужно найти решение;






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.