Деление двоичных чисел в прямом, обратном и дополнительном кодах (49648)

Посмотреть архив целиком

Министерство образования Республики Таджикистан

Таджикский Технический Университет им. ак. М. С. Осими

кафедра АСОИиУ










Курсовая работа


на тему: «Деление двоичных чисел в прямом, обратном

и дополнительном кодах»














Душанбе 2009


Оглавление


Аннотация

Введение

Позиционные системы счисления

Двоичная арифметика

Правила перевода

Перевод целых чисел

Перевод дробных чисел

Прямой, обратный и дополнительный коды

Сложение и вычитание в прямом, обратном и дополнительном кодах

Деление в прямом, обратном и дополнительном кодах

Заключение

Использованная литература


Аннотация


Развитие науки и техники, исследование физических явлений, создание новых машин, материалов, процессов, систем управления невозможно без детального изучения закономерностей и установления численных характеристик и соотношений, определяющих их протекание и функционирование. Решение связанных с этим математических задач, как правило , возможно только численными методами, требующими сложных и трудоёмких вычислений.

В середине ХХ века развитие атомной физики, ракетной и космической техники потребовало решения вычислительных задач такого большого объёма, что с ними нельзя было справиться при помощи в то время средств вычислительной техники – клавишных или перфорационных машин.

Это потребность привела к созданию на рубеже 40 - 50-х годов электронных автоматических цифровых вычислительных машин (ЦВМ), воплотивших в себе научные и технические достижения того времени, в частности в области электронной автоматики.

Особое значение электронных цифровых вычислительных машин состоит в том, что впервые с их появлением человек получил орудие для автоматизации процессов обработки информации.

В настоящее время все вычислительные машины являются цифровыми, то есть в принципе их работы лежат числа. В цифровой технике самое широкое распространение получил двоичный код, а именно код в основе которого лежит двоичная система счисления (т.е цифры «0» и «1»). Двоичная система счисления применяется при обработке данных во всех современных вычислительных системах. Принцип работы компьютера (ЭВМ) также основан на двоичной системе. В нём в качестве двоичных нуля и единицы на электрическом уровне организованно соотношение «есть сигнал» - «1», «нет сигнала» - «0».

Но для выполнения каких либо вычислений необходимо сначала организовать принцип вычислений в двоичной системе. Для этого и была разработана специальная двоичная «арифметика», показывающая закономерности при выполнении простейших арифметических операций над двоичными числами, а именно сложения, вычитания, умножения и деления.


Введение


В данной курсовой работе будут рассмотрены все аспекты связанные с системами счисления, двоичной арифметикой, и арифметическими операциями над двоичными числами. Мы рассмотрим различные системы счисления, их различия, преимущества и недостатки а также методы и способы перехода между различными системами счисления.

В частности затронем правила двоичной арифметики, являющейся основным закономерным элементов всей цифровой (двоичной) технологии. Подробно разберём каждый элемент двоичной арифметики, а именно двоичное сложение, двоичное вычитание и двоичное умножение. Операция двоичного деления сводится как правило к последовательности суммирования и вычитания, а также в некоторых методах и сдвига двоичного кода.

По делению в двоичном коде мы пройдёмся подробней. Будут рассмотрены методы реализования деления двоичных чисел в прямом, обратном и дополнительном кодах. В частности будут рассмотрены два основных метода организации деления двоичных чисел, а именно метод деления с восстановлением остатка и метод деления без восстановления остатка (этот метод аналогичен простому делению «в столбик»). Их преимущества и недостатки, принципы построения алгоритма.


Позиционные системы счисления


Под системой счисления понимается способ представления любого числа посредством некоторого алфавита символов, называемых цифрами. Существуют различные системы счисления. От их особенностей зависят наглядность представления числа при помощи цифр и сложность выполнения арифметических операций.

Римская непозиционная система счисления является примером системы с очень сложным способом записи чисел и громоздкими правилами выполнения арифметических операций.

Огромными преимуществами в наглядности представления чисел и в простоте выполнения арифметических операций обладают позиционные системы счисления. Этим объясняется то выдающееся значение для развития вычислений, которое имело создание арабами позиционной десятичной системы счисления, используемой нами в повседневной жизни.

Система счисления называется позиционной, если одна и та же цифра имеет различное значение, определяющееся позицией цифры в последовательности цифр, изображающей число. Это значение меняется в однозначной зависимости от позиции, занимаемой цифрой, по некоторому закону. Помимо десятичной системы существуют другие позиционные системы. Некоторые из них нашли применение в вычислительной технике.

Количество s различных цифр, употребляемых в позиционной системе, называется ее основанием. Эти цифры обозначают s целых чисел, обычно 0, 1, ... , (s - 1). В десятичной системе используются десять цифр: О, 1, 2, 3, 4, 5, 6, 7, 8, 9 и поэтому эта система имеет основанием число десять.

В общем случае позиционной системы с основанием s любое число х может быть представлено в виде полинома от основания s:



где в качестве коэффициентов εi могут стоять любые из s цифр, используемых в системе счисления.

Принято пользоваться эквивалентной, но более простой формой представления числа в виде последовательности соответствующих цифр:



В этой последовательности запятая отделяет целую часть числа от дробной (коэффициенты при положительных степенях s, включая нуль, от коэффициентов при отрицательных степенях). Запятая опускается, если нет отрицательных степеней. Позиции цифр, отсчитываемые от запятой, называют разрядами. В позиционной системе счисления значение каждого разряда больше значения соседнего справа разряда в число раз, равное основанию s системы.

С учетом сказанного в десятичной системе счисления запись 6097, 108 означает число:



В электронных вычислительных машинах применяют позиционные системы счисления с недесятичным основанием: двоичную, шестнадцатеричную, восьмеричную и некоторые другие. В дальнейшем для обозначения используемой системы счисления будем заключать число в скобки и в индексе указывать основание системы счисления.

Наибольшее распространение в ЦВМ имеет двоичная система счисления. В этой системе используются только две («двоичные») цифры: (нуль) и 1 (единица).

В двоичной системе любое число может быть, представлено соответствующей последовательностью двоичных цифр



где αi могут быть либо 0, либо 1. Эта запись соответствует сумме степеней числа 2, взятых с указанными в ней коэффициентами:



Например, двоичное число



как следует из приведенного разложения его по степеням числа 2, соответствует десятичному числу:


Изображения некоторых чисел в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления показаны в таблице:


Десятичное

изображение

Двоичное

изображение

Восьмеричное изображение

Шестнадцатеричное

изображение

Десятичное

изображение

Двоичное

изображение

Восьмеричное изображение

Шестнадцатеричное

изображение

0

0

0

0

11

1011

13

B

1

1

1

1

12

1100

14

C

2

10

2

2

13

1101

15

D

3

11

3

3

14

1110

16

E

4

100

4

4

15

1111

17

F

5

101

5

5

16

10000

20

10

6

110

6

6

17

10001

21

11

7

111

7

7

18

10010

22

12

8

1000

10

8

1/4

0,01

0,2

0,4

9

1001

11

9

7/8

0,111

0,7

0,E

10

1010

12

A

4,5

100,1

4,4

4,8


Случайные файлы

Файл
79496.rtf
32109.rtf
61244.rtf
4271-1.rtf
183746.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.