Выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ (49529)

Посмотреть архив целиком

35



Московский Авиационный Институт

(Технический Университет)









Кафедра 308


Курсовая работа

Выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ


Вариант II(2)



Выполнила

студентка

группы КТ-515

Принял





Москва

2008г.


Содержание


Задание

1. Метод динамического программирования

1.1 Теоретическая часть

2.2 Практическая часть

- ручной счёт

- листинг программы

2. Метод ветвей и границ

2.1 Теоретическая часть

2.2 Практическая часть

- ручной счёт

- листинг программы

Вывод

Литература



Задание


Вариант II(2)

Выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ при непересекающихся элементах объекта контроля и ограничениях по затратам на контроль С≤16.

Исходные данные: вероятность отказов элементов и затраты на контроль параметров.


Выбрать такие параметры, чтобы С≤16 при Q=Qmax.

N

1

2

3

4

5

6

7

8

9

10

Qi

0.17

0.03

0.15

0.09

0.13

0.08

0.07

0.02

0.06

0.04

с(xi)

5

1

4

2

6

3

2

3

1

1



1. Метод динамического программирования


1.1 Теоретическая часть


Математически задачу выбора набора параметров из заданной их совокупности можно сформулировать следующим образом.

Пусть работоспособность объекта контроля характеризуется совокупностью n взаимосвязанных параметров, образующих множество S={x1, x2, …, xn}. Проверка всех параметров из S влечет контроль всех N элементов системы и дает однозначный ответ: объект исправен, если все N элементов исправны, или неисправен, если по крайней мере один из элементов отказал. Для  xi определено подмножество R(xi) элементов, проверяемых при контроле i-го параметра, причем предполагаем, что эти подмножества могут пересекаться, т.е.  i, j: R(xi)R(xj). Пусть  - некоторый набор параметров из множества S, т.е. S. Тогда  и S. Значения xi из S можно представить булевым вектором, причем


xi = 1, если xi,

0, если xi.


Задача выбора параметров в этом случае формулируется двояко:

  1. найти набор Ω, для которого


P(Ω)=max


при ∑xi·c(xi)≤C; iЄΩ

  1. найти набор Ω, для которого


xi·c(xi)=min


при P(Ω)≥Pз,

где P(Ω) – апостериорная вероятность работоспособного состояния объекта контроля при положительном исходе контроля выбранных параметров S; с(xi) – затраты на контроль i-го параметра; Рз – требуемая достоверность контроля; С – ограничение на общую стоимость контроля.

Значение P(Ω) зависит от принятых допущений и может быть найдено по формуле Байеса. Так, если предполагать в изделии наличие лишь одного отказа, то


P(Ω)=Р0/1-∑Рi,

iЄR(Ω)


где Р0=∏(1-рi) – априорная вероятность безотказной работы объекта:

iЄR(S)


Р0=1-∑Рi;

iЄR(S)


Рi - нормированная вероятность отказа системы из-за отказа i-го элемента:


Рi=(pi/(1-pi))/(1+∑ pk/(1-pk);

kЄR(S)


pi – априорная вероятность отказа i-го элемента. Тогда вероятность того, что отказ будет обнаружен при проверке k-го параметра, можно вычислить по формуле:


Qk=∑Pk

kЄR(xk)


При возможности наличия в ОК произвольного числа отказов


P(Ω)=∏(1-pi)/∏(1-pi)

iЄR(S) iЄR(Ω)


Можно использовать простой перебор вариантов, однако возникающие при этом вычислительные трудности не позволяют сделать этого даже для простых систем (при n>10). В связи с этим комплектование набора будем трактовать как многошаговый процесс, состоящий из последовательного выбора отдельных параметров.

В соответствии с общим принципом оптимальности разобьем весь имеющийся ресурс стоимости С на С отрезков единичной длины. (В практических случаях заданные положительные величины с(xi) и С можно считать всегда целыми. Если это не так, то необходимо перейти к более мелким стоимостным единицам в зависимости от разрядности дробной части.). Рассмотрим наряду с интересующей нас исходной задачей множество аналогичных задач


f(Y)=max λ(x), Y Є [0,C],

xЄXY


где через XY обозначено множество неотрицательных целочисленных векторов Ω, отвечающих наборам, в которых общая стоимость проверки параметров не превосходит величины Υ.

Пусть Υ0=min c(xi).


i=1,…,n


Тогда при всех Υ Є [0,Υ0] соответствующие множества ΧΥ состоят, из одного нулевого элемента и f(Y)=0 для всех таких Υ. Для ресурса Υ Є [Υ0, С] согласно общей схеме динамического программирования справедливы следующие рекуррентные соотношения:


f(Yk)=max [Qi + f[Yk – c(xi)] – Gi (1)

iЄIY


где k=Y0, Y0+1, …, C; IY – множество тех i, для которых с(xi)≤Yk, начиная с номера k=max c(xi) уравнение (1) решается для всех i= 1,…,n;

Gi = ∑Pi – сумма вероятностей элементов i-го параметра, которые пересекаются с


IЄR(xi)∩Ωl*


элементами подмножества Ωl*, образованного на шаге Ykc(xi).

Если  i, j; R(xi)∩R(xj)= , то Gi=0 и


f(Yk)=max {Qi + f[Ykc(xi)]} (2)

iЄIY


Для решения интересующей нас задачи опишем простой численный метод, не требующий предварительного определения всех допустимых наборов и основанный на рекуррентных соотношениях (1). Для всех целых Υ = Υ0, С по формуле (1) вычисляются величины f(Yk) и при этом фиксируются индексы iYk*, на которых достигаются максимумы в (1). Искомый вектор Ω формируется последовательно включением в набор параметра iYk и подмножества Ωl*, зафиксированного на шаге Ykc(xi). При этом, если YkЄ Ωl*, то на данном шаге этот параметр исключается из рассмотрения, так как каждый параметр может включаться в набор не более одного раза. Если на некотором ν-м шаге окажется, что f(Yν)< f(Yν-1), то в качестве Ων* принимается подмножество Ων-1* и фиксируется параметр iY ν-1, причем за f(Yν)< принимается значение f(Yν-1). Заметим, что если в задаче P(Ω)=max при


xi·c(xi)≤C

iЄΩ


принять более жесткое ограничение, а именно ∑c(xi)=C, то последнее не допустимо, iЄΩ так как в этом случае max f(Yk) может быть меньше max f(Yk-1) из-за того, что он достигается на другом подмножестве параметров.

Общая сложность метода, очевидно, φ(n) ≤ c(n+1), т.е. экспоненциальная функция при переборе заменена линейной функцией. При этом для запоминания промежуточных значений необходимо k≤2c ячеек памяти. Если в качестве максимизируемого критерия использовать P(Ω)=∏(1-pi)/∏(1-pi), то необходимо решить задачу динамического iЄR(S) iЄR(Ω) программирования с мультипликативным критерием. Для этого достаточно прологарифмировать это выражение и обозначить


V=lgP(Ω)=lgР0-∑lg(1-pi). (3)

iЄR(Ω)


Так как выражение, стоящее под знаком ∑ в (3), отрицательно, то, V= Vmax тогда, когда максимальна величина суммы, т.е. в этом случае получим новую целевую функцию


V=∑νi, где νi=lg (1-pi),

iЄR(Ω)


обладающую свойством аддитивности и обращающуюся в максимум одновременно с P(Ω).



1.2 Практическая часть


Ручной счёт

Данные для расчета:

С≤16

Таблица 1

N

1

2

3

4

5

6

7

8

9

10

Qi

0.17

0.03

0.15

0.09

0.13

0.08

0.07

0.02

0.06

0.04

с(xi)

5

1

4

2

6

3

2

3

1

1


Для удобства расчетов проранжируем таблицу1 следующим образом:

Таблица 2

N

9

10

2

4

7

6

8

3

1

5

Qi

0.06

0.04

0.03

0.09

0.07

0.08

0.02

0.15

0.17

0.13

с(xi)

1

1

1

2

2

3

3

4

5

6


Вычисления сведем в таблицу 3:


Таблица 3

Yk

f(Yk)

iYk

Ωl*

1

0,06

9

9

2

0,1

10

9,10

3

0,15

4

4,9

4

0,19

4

4,10,9

5

0,22

7

7,4,9

6

0,26

7

7,4,10,9

7

0,3

3

3,4,9

8

0,34

3

3,4,10,9

9

0,37

3

3,7,4,9

10

0,41

7

7,3,4,10,9

11

0,44

2

2,7,3,4,10,9

12

0,47

1

1,3,4,9

13

0,51

1

1,3,4,10,9

14

0,54

2

2,1,3,4,10,9

15

0,58

7

7,1,3,4,10,9

16

0,61

1

1,2,7,3,4,10,9


Оптимальный набор включает параметры Ω*= {1,2,7,3,4,10,9} при этом

P(Ω) = 0,61+0,16 = 0,77 и С = 16.


Листинг программы

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, ToolWin, ComCtrls, mdCONTROLS, Grids, StdCtrls, ExtCtrls, Unit2,

Buttons;

type

TForm1 = class(TForm)

sgH: TStringGrid;

sgP: TStringGrid;

sgC: TStringGrid;

sgQ: TStringGrid;

lbC: TLabeledEdit;

BitBtn1: TBitBtn;

Label1: TLabel;

sgW: TStringGrid;

Label2: TLabel;

procedure FormCreate(Sender: TObject);

procedure BitBtn1Click(Sender: TObject);

procedure sgExit(Sender: TObject);

private

{ Private declarations }

public

H: TH;

P: TP;

C: TC;

W: TW;

end;

var

Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);

var i,j: integer;

x: Byte;

f: TextFile;

begin

AssignFile(f, 'data.txt');

Reset(f);

sgW.Cells[0,0] := 'W';

// Ввод исходной матрицы

readln(f);

for j:=1 to 10 do

begin

sgH.Cells[0,j] := IntToStr(j);

sgW.Cells[0,j] := IntToStr(j);

for i:=1 to 10 do

begin

sgH.Cells[i,0] := IntToStr(i);

read(f, x);

sgH.Cells[i,j] := IntToStr(x);

if x = 1 then

H[i-1,j-1] := true

else

H[i-1,j-1] := false;

end;

readln(f);

end;


// Ввод вероятностей

readln(f);

readln(f);

sgP.Cells[0,0] := 'P';

for i:=1 to 10 do

begin

read(f, P[i-1]);

sgP.Cells[i,0] := FloatToStr(P[i-1]);

end;

readln(f);


// Ввод стоимостей

readln(f);

readln(f);

sgC.Cells[0,0] := 'C';

for j:=1 to 10 do

begin

read(f, C[j-1]);

sgC.Cells[0,j] := IntToStr(C[j-1]);

end;

CloseFile(f);


// Ввод вероятностей обнаружения отказа

sgQ.Cells[0,0] := 'Q';

for j:=1 to 10 do

sgQ.Cells[0,j] := FloatToStr(Q(j-1,H,P));

lbC.Text := '1';

end;


procedure TForm1.BitBtn1Click(Sender: TObject);

var i: integer;

begin

label1.Caption := FloatToStr(maxf(1, StrToInt(lbC.Text), H,P,C, W));

for i:=1 to 10 do

begin

sgW.Cells[2,i] := IntToStr(W[i-1].N);

if W[i-1].E then

sgW.Cells[1,i] := '1'

else

sgW.Cells[1,i] := '0';

end;

end;


procedure TForm1.sgExit(Sender: TObject);

var i,j: integer;

begin

for j:=1 to 10 do

for i:=1 to 10 do

if sgH.Cells[i,j] = '1' then

H[i-1,j-1] := true

else

H[i-1,j-1] := false;


Случайные файлы

Файл
12298.rtf
122230.doc
14084-1.rtf
18287.rtf
Kompanella_aik@.doc