Разработка програмного обеспечения для расчёта дисперсионной характеристики планарного волновода (48664)

Посмотреть архив целиком

Федеральное агентство образования и науки Российской Федерации



ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ

УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ





Кафедра сверхвысокочастотной и квантовой радиотехники






Применение методов вычислительной математики




Пояснительная записка к курсовой работе по информатике








Студент группы 164


__________.

«___»__________г.



Руководитель

Аспирант кафедры

_________

«___»__________.






РЕФЕРАТ.


Курсовая работа 26 с., 9 рис., 2 источника, 3 приложения.

МЕТОД ДИХОТОМИИ, ДИСПЕРСИОННАЯ ХАРАКТЕРИСТИКА, НАПРАВЛЯЮЩИЕ УГЛЫ, ПЛАНАРНЫЙ ВОЛНОВОД, ПРОФИЛИ ТЕ-МОД.

Объектом исследования является асимметричный планарный волновод, предназначенный для распространения в нём ТЕ-мод.

Цель работы – разработка програмного обеспечения для расчёта дисперсионной характеристики планарного волновода, нахождения направляющих углов для ТЕ-мод и построения соответствующих им профилей.

В процессе работы реализована программа для расчёта дисперсионной характеристики планарного волновода, отработана методика нахождения корней уравнений численными методами.

В результате исследования получены зависимости количества, направляющих углов и профилей ТЕ-мод от характеристик волновода и длины волны излучения.

Пояснительная записка к дипломной работе выполнена в текстовом редакторе Microsoft Word 2002.

"УТВЕРЖДАЮ"

Зав.каф.

________.

"___" г.


ЗАДАНИЕ № 9


на курсовую работу по дисциплине "ИНФОРМАТИКА"


студенту гр.

(фамилия, имя, отчество)


  1. Тема работы: применение методов вычислительной математики

  2. Срок сдачи работы на кафедру -

  3. Содержание работы и сроки выполнения работы:

3.1. Изучение задания и рекомендованной литературы - 2я неделя.

3.2. Разработка алгоритма решения и составление схемы алгоритма - 4я неделя.

3.3. Составление программы для решения задачи в пакете MATHCAD - 7я неделя.

3.4. Написание программы и создание пользовательского интерфейса в среде программирования “Borland Delphi”. - 10я неделя.

3.5. Отладка программы на ПК. - 12я неделя.

3.6. Выполнение вычислений на ПК. - 14я неделя.

3.7. Оформление пояснительной записки в соответствии с требованиями к оформлению курсовых работ. - 15я неделя.

  1. Рекомендуемая литература:

4.1. Фигурнов В.Э. IBM PC для пользователя. - М.: Финансы и статистика, 1990г, - 240с.

4.2. Сергиевский М.В., Шалашов А.В., Турбо Паскаль 7.0., Язык, среда, программирования. - М.: Машиностроение. - 1994. - 254с.

4.3. Мудров А.Е., Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. - Томск : МП "РАСКО", 1991. - 272с.

4.4. Дьяконов В.П. Система MathCAD: Справочник, - М.: Радио и связь, 1993. - 128с.

4.5. Кудрявцев Е.М. Mathcad2000 Pro: - М.: ДМК Пресс, 2001. – 576 с.: ил.

  1. Дополнительную литературу студент ищет самостоятельно в зависимости

от темы и сложности задания.

  1. Исходные данные:

    1. Определить профили мод ТЕ в планарном волноводе, если профиль компоненты Еу задан в трех слоях как:

, x0

,

где - поперечные волновые числа 1, 2 и 3-й сред соответственно.

6.2.Дисперсионная характеристика для ТЕ-мод в планарном волноводе задается выражением:

где n1, n2, n3 – показатели преломления трех сред;

m – порядок моды;

θ – угол падения луча на границу раздела сред;

d – толщина волноводного слоя;

 - длина волны света в вакууме.


- Построить семейство диспесионных характериситик для заданных значений n1, n2, n3, ;

- Для заданного значения d определить количесвто направляемых мод и соответствующие углы ввода для каждой из них;

- Построить профили ТЕ мод распрастроняющихся в волноводе с заданными конструктивными параметрами.

6.3. Пункт 6.1.-6.2. повторить на пакете MATHCAD.

- Точность вычислений обеспечить не хуже 10-3.

- Ввод исходных данных организовать с помощью меню.

  1. Состав пояснительной записки:

7.1. Титульный лист.

7.2. Аннотация.

7.3. Лист задания с подписью преподавателя.

7.4. Содержание.

7.5. Введение. Постановка задачи.

7.6. Математическое описание используемого метода для решения задачи. Кратко, понятно, лаконично изложение теории.

7.7. Описание алгоритма решения задачи и схема алгоритма.

7.8. Описание программы. Результаты решения.

7.9. Интерпретация результатов и выводы по проделанной работе.

7.10. Список используемой литературы.

7.11. Распечатка программы с комментариями (в виде приложения).

  1. Отчетность по работе:

8.1. В ходе выполнения работы - отчетность по фактическому материалу в рабочей тетради ( в соответствии со сроками выполнения основных этапов, указанных в п.3).

8.2. Пояснительная записка, в обязательном порядке со всеми разделами по п.7. без исключения.

8.3. На дискете - передается: файл программы, подробное описание программы.

8.4. После оформления пояснительной записки - защита на кафедре.


Дата выдачи задания .


Подпись руководителя _____________


Подпись студента _____________




Содержание:



1

Введение

6

2

Математическое описание использованного для решения задачи метода

7

3

Описание алгоритма решения задачи и схема алгоритма

8

4

Описание программы

15

5

Результаты решения, их интерпретация и выводы по проделанной работе

10


5.1

Результаты работы программы

10


5.2

Результаты проверки в пакете «MathCAD»

12


5.3

Интерпретация результатов и выводы по проделанной работе

13

6

Список использованной литературы

14

7

Приложение А

15

8

Приложение В

18

9

Приложение С

25
























  1. Введение


В этой работе перед нами ставится цель научиться применять некоторые численные методы при решении метематических задач при помощи ПК. Математическое моделирование процессов и явлений в различных областях науки и техники является одним из основных способов получения новых знаний и технологических решений. Для решения поставленной в этом курсовом проекте задачи необходи иметь основные навыки программирования на языке «Pascal» и в объектно-ориентированной среде «Delphi». Эти знания могут пригодиться и в будущем, при написании каких-либо программ вычислительного характера.

В данной работе необходимо написать программу, которая бы рассчитала дисперсионную характеристику планарного волновода и построила профили направляемых в нём ТЕ-мод. Для нахождения направляющих углов был использован метод дихотомии (половинного деления). Он наиболее прост в реализации, имеет относительно быструю сходимость и позволяет легко контролировать погрешность вычислений.


2. Математическое описание использованного

для решения задачи МЕТОДА.


Нажождение корня уравнения методом дихотомии.

Считаем, что на отрезке [а, b] расположен один корень, который необходимо уточнить с погреш­ностью e.

Метод дихотомии, или половинного деления, заключается в следующем. Определяем середину отрезка [а, b]

Х= (а + b)/2

и вычисляем функцию f(Х). Далее делаем выбор, какую из двух частей отрезка взять для дальнейшего уточнения корня. Если левая часть уравнения f(x) есть непрерывная функция аргумента х, то корень будет находиться в той половине отрезка, на концах которой f(x) имеет разные знаки.Это будет отрезок [а, Х], т.е. для очередного шага уточнения точку b перемещаем в середину отрезка Х и продолжаем процесс деления как с первоначальным отрезком [а,b].

Итерационный (повторяющийся) процесс будем продолжать до тех пор, пока интервал [а,b] не станет меньше заданной погрешности e.

Следует учитывать, что функция f(x) вычисляется с некоторой абсолютной погрешностью e1. Вблизи корня значения функции f(x) малы по абсолютной величине и могут оказаться сравнимыми с погрешностью ее вычисления. Другими словами, при подходе к корню мы можем попасть в полосу шумов 2e1 и дальнейшее уточнение корня окажется невозможным. Поэтому надо задать ширину полосы шумов и прекратить итерационный процесс при попадании в нее. Также необходимо иметь в виду, что при уменьшении интервала [а,b] увеличивается погрешность вычисления его длины (b – а) за счет вычитания близких чисел.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.