Готовый вариант 11 (К7 вар 11)

Посмотреть архив целиком

К7. Определение абсолютной скорости и абсолютного ускорения точки.

Дано:

OM=Sr(t)=25sin(t/3);

4c

a=25см


v-?

a-?













Положение точки М на теле D определяется расстоянием Sr=ОМ.

При 4c Sr=25 sin(4/3)= -21,65 см.



Абсолютную скорость точки М найдем как геометрическую сумму относительной и переносной скоростей:

Модуль относительной скорости , где dSr/dt=25cos(t/3) /3

При t=4c -13,08см/с.

13,08см/с.

Отрицательный знак у показывает, что вектор направлен в сторону убывания Sr.

Модуль переносной скорости =, где

-радиус окружности L, описываемой той точкой тела, с которой в данный момент совпадает точка М,

-модуль угловой скорости тела.

Найдем .

Рассмотрим прямоугольный треугольник .

АМ=ОА-ОМ.

АМ=25-21,65=3,35см.

=25см.

По теореме Пифагора имеем:

=25,22см.

Найдем .

, где

=d/dt =4t-0,5

При t=4c =15,5рад/с.

Знак ”+” у величины показывает, что вращение тела D происходит в ту же сторону, в которую ведется отсчет угла .

Тогда модуль переносной скорости

==390,91 см/с.

Модуль абсолютной скорости v найдем способом проекций.

Через точку М проводим оси X и Y.

Из треугольника :

=AM/

=3,35/25,22=0,13

Тогда

1,704 см/с

403,86см/с.

Значит v =