Представление текстовой и графической информации в электронном виде (48163)

Посмотреть архив целиком

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ ИМЕНИ В.Г. БЕЛИНСКОГО


Кафедра «Вычислительных систем и моделирования»








КУРСОВАЯ РАБОТА

по дисциплине «Вычислительные системы, сети и телекоммуникации»


Тема: «Представление текстовой и графической информации в электронном виде»




Выполнил: студентка гр. ПЭ-31 А-1

Васькова Е.О.,

студентка гр. ПЭ-31 А-1

Гусева Д.И

Проверил: к.т.н., доцент Коннов Н.Н.




2007


Для выполнения работы в текстовом редакторе был набран текст лекций по курсу «Вычислительные системы, сети и телекоммуникации». Все изображения были созданы в графическом редакторе Microsoft Office Visio.

На основе подготовленных документов создан электронный учебник, который можно просмотреть на прилагаемом диске. Некоторые фрагменты учебника представлены в приложении.



Вычислительная система


Вычислительная система - комплекс аппаратных систем, решающих задачи на основе программы.

Вычислительные устройства по принципам решения задач и представления информации делятся на:

  1. Аналоговые

Обрабатываемая информация представляется в виде непрерывно изменяющихся физических параметров. Обработка информации представляет собой воспроизведение сигналов, параметры которых изменяются в соответствии с определенным законом.

  1. Цифровые

Манипулируют символами (цифрами). Необходимо иметь физические устройства, позволяющие различать устойчивые состояния (например, замкнутая и незамкнутая цепь).

  1. Предтеча современных компьютеров - «аналитическая машина», над созданием которой в 1830-е годы работал Чарльз Бэббидж, считывала программы с бумажных носителей – перфокарт. Данные хранились на специальном механическом устройстве.

  2. В конце 19 веке появились арифмометры, разработанные на основе колеса Однера, которое имело переменное количество зубцов и 10 устойчивых состояний.

  3. В начале 20 в. (период Первой Мировой войны) были разработаны электронно-вычислительные системы

Полный промышленный цикл обработки перфокарт реализовал Герман Холлерит – создатель одной из фирм прародителей корпорации IBM.

  1. Во время Второй Мировой войны Генрих Цузер разработал машину Ц-3 на основе электромагнитного реле.

  2. Современный этап

Первое поколение (1949-1958)

Основным активным элементом ЭВМ первого поколения является электронная лампа.

Для построения оперативной памяти применялись ферритовые сердечники. В качестве устройств ввода/вывода (УВВ) сначала использовалось стандартная телеграфная аппаратура, а затем специально для ЭВМ были разработаны электромеханические УВВ на перфокартах и перфолентах. Машины этого поколения характеризуются огромными размерами, малым быстродействием, малой емкостью оперативной памяти (ОП), невысокой надежностью; недостаточно развитым программным обеспечением (ПО). Первой настоящей ЭВМ считается ENIAC.

Американский математик Джон фон Нейман сформулировал основные принципы программного управления:

- Информация, обрабатываемая машиной ( данные и команды), должна представляться двоичным кодом

- Каждая команда задает вид операции и адреса операндов в памяти.

- Команды и данные располагаются в ячейках памяти. Память машины имеет линейную структуру.

- Программа - упорядоченная последовательность команд, при этом реализуется естественный порядок выполнения команд (в порядке возрастания адресов ячеек памяти). Для нарушения этого порядка применяются специальные команды передачи управления.

Второе поколение (1959-1963)

Основной активный элемент - транзистор. По сравнению с первым поколением уменьшены размеры, стоимость, масса и потребляемая мощность, повышена надежность и быстродействие, увеличен объём памяти. Отличительные черты: специализация, появление алгоритмических языков, многопрограммных ЭВМ, применение УВВ на магнитных носителях.

Третье поколение (1964-1976)

Характеризуется широким применением интегральных схем (ИС). ИС (кристалл) - это законченный функциональный блок, соответствующий сложной транзисторной схеме, вытравленной на поверхности кремниевого кристалла. Позднее стали применяться ИС малой (10-100 компонентов на кристалл) и средней (100-1000 компонентов на кристалл) степени интеграции. Отличительные черты: увеличение количества используемых УВВ, дальнейшее развитие ПО, особенно операционных систем, возможность удаленного доступа пользователей к ЭВМ, виртуальное использование ЭВМ в режиме разделения времени, применение методов автоматического проектирования; унификация ЭВМ.

Четвёртое поколение (1977-1990г.г.)

Характеризуется применением больших интегральных схем (БИС) и сверхбольших интегральных схем (СБИС). Отличительные черты: тенденция к унификации ЭВМ и развитию мини- и микроЭВМ, использование быстродействующих систем памяти и Моп-технологий, создание машин, представляющих единую систему (ЕС ЭВМ), появление первых персональных компьютеров и рабочих станций, основной носитель информации - гибкий магнитный диск.

Пятое поколение (настоящее время)

ЭВМ пятого поколения (кроме высокой производительности и надежности при более низкой стоимости) должны удовлетворять следующим функциональным требованиям:

- обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, диалоговой обработки информации с использованием естественных языков;

- возможности обучаемости, ассоциативных построений и логических выводов;

- упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

- улучшить основные характеристики и эксплуатационные качества ВТ для удовлетворения различных социальных задач,

- улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

- обеспечить их разнообразие, высокую адаптируемость к приложениям и надежность в эксплуатации.


Структура современной машины



Обобщенная структура простейшей фон-неймановской ЭВМ

А – адресная шина

Д – шина данных

РК – регистр команд

ЗПР – запросы прерывания

СОЗУ – сверхоперативная память

УУ – устройство управления

Любая ВМ может быть разделена на три части:

- обрабатывающая часть – процессор (ЦП);

- оперативное запоминающее устройство (ОЗУ);

- периферийные устройства (ПУ).

В состав ЦП входят:

- арифметико-логическое устройство (АЛУ), обрабатывающее данные;

- внутренняя память процессора (сверхоперативная память - СОЗУ), которая используется для хранения операндов, адресов, в том числе и очередной команды на специальном регистре СК (счётчик команд). Делится на программно доступную (регистры, которые видны программисту) и скрытую;

- устройство управления (УУ), которое выделяет последовательность сигналов контролирующих передачу информации между остальными устройствами в соответствии с содержимым регистра команд (РК), на который принимается очередная команда.

Разрядность процессора – максимальная разрядность данных, обрабатываемых одной командой.

Адресное пространство процессора – максимальное количество ячеек ОП, которые могут им адресоваться. Если rA- разрядность, то адресное пространство 2rA.

Ширина выборки – количество данных, которые могут считываться одновременно в ЦП из ОП.

Производительность – количество задач, решаемых в единицу времени.

Быстродействие – время выполнения одной операции.

Выполнение операции включает в себя следующие фазы:



ВК (выборка команды): процессор вычисляет адрес ячейки памяти, где хранится команда(этот адрес он берет из СК), обращается к памяти, считывает команду, помешает на внутренний регистр памяти, вычисляет адрес следующей команды(модифицирует СК).

ДК (дешифрация команды): по значению кода определяется раскладка полей (формат) команды, в соответствии с чем настраиваются устройства.

ВО1, ВО2, …(выборка операнда):вычисление адресов операндов и обращение к ним, помещение операндов из ОП в регистры СОЗУ.

ИК (исполнение команды): действия над операндами.

ЗР (запись результата): полученный результат записывается в регистр памяти.

Фазы ВК, ДК и ИК являются обязательными. После ЗР выполняются фазы следующей команды или фаза прерывания.

Структура команды:



Структурная схема микропроцессора intel8086

Первые процессоры, появившиеся в персональных ЭВМ были 16-разрядные. Процессор, стоявший в компьютере IBM PC, был изготовлен фирмой Intel, назывался i8086 и работал на тактовой частоте 4,77 МГц. Процессоры следующего поколения, 80186, 80188, 80286, тоже были 16-ти разрядными, хотя имели более высокую тактовую частоту и возможность работы с памятью выше 1 Мбайта в защищенном режиме .

Коротко 16-ти битные процессоры можно описать:

  • Разрядность ядра - 16 бит

  • Число регистров - 14

  • Разрядность шины данных : внутренняя - 16 или 8 бит, внешняя - 16 бит

  • Адресная шина - 20 бит (память до 1 Мбайта)

  • Внутренняя кэш-память - отсутствует

  • Внешняя шина для подключения устройств ввода/вывода - ISA (Industry Standard Architecture), 16 бит, 8 МГц


На рисунке представлена структурная схема микропроцессора 8086, в состав которого входят: устройство управления, арифметико-логическое устройство, блок преобразования адресов и регистры.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.