Интерполяция функции одной переменной методом Ньютона (47095)

Посмотреть архив целиком

Аннотация


Пояснительная записка курсовой работы "Интерполяция функции одной переменной методом Ньютона" содержит в себе введение, анализ задания описанием входных и выходных данных, обзор литературных источников, описание математической модели и методов вычислительной математики, пояснения к алгоритму, текст программы, инструкцию. При изучении дисциплины "Информатика" для написания курсовой работы использовались различные литературные источники, которые перечислены в настоящем документе. В данной курсовой работе приведена программа, которая применяется для интерполяции таблично заданной функции методом Ньютона. В ней был использован метод структурного программирования для облегчения написания и отладки программы, а также повышения ее наглядности и читаемости. Целью написания данной работы было получение и закрепление практических навыков разработки алгоритмов различными методами. Представленная программа реализована на языке программирования Pascal. Пояснительная записка содержит 25 листов, на которых размещено два рисунка, текст программы и описание программы и алгоритма.


Содержание


Введение

Анализ задания

Математическая модель задачи

Программирование функции формулы Ньютона

Обзор литературных источников

Разработка программы по схеме алгоритма

Инструкция пользования программой

Текст программы

Исходные данные и результат решения контрольного примера

Заключение

Список использованных источников


Введение


Современное развитие физики и техники тесно связано с использованием электронных вычислительных машин (ЭВМ). В настоящее время ЭВМ стали обычным оборудованием многих институтов и конструкторских бюро. Это позволило от простейших расчетов и оценок различных конструкций или процессов перейти к новой стадии работы - детальному математическому моделированию (вычислительному эксперименту), которое существенно сокращает потребность в натурных экспериментах, а в ряде случаев может их заменить.

Сложные вычислительные задачи, возникающие при исследовании физических и технических проблем, можно разбить на ряд элементарных -таких как вычисление интеграла, решение дифференциального уравнения и т. п. Многие элементарные задачи являются несложными и хорошо изучены. Для этих задач уже разработаны методы численного решения, и нередко имеются стандартные программы решения их на ЭВМ. Есть и достаточно сложные элементарные задачи; методы решения таких задач сейчас интенсивно разрабатываются.

В связи с этим современный специалист с высшим образованием должен обладать не только высоким уровнем подготовки по профилю своей специальности, но и хорошо знать математические методы решения инженерных задач, ориентироваться на использование вычислительной техники, практически освоить принципы работы на ЭВМ.



Анализ задания


В качестве входных данных использованы:

  1. Количество узлов.

  2. Табличные значения функции.

Выходными данными, т.е. результатом программы является:

  1. Значения таблично заданной функции в промежуточных значениях.

  2. График полинома.


Математическая модель задачи


При выполнении курсовой работы была выбрана следующая математическая модель:

Интерполяция и приближение функций.

1. Постановка задачи.

Одной из основных задач численного анализа является задача об интерполяции функций. Часто требуется восстановить функцию для всех значений на отрезке если известны ее значения в некотором конечном числе точек этого отрезка. Эти значения могут быть найдены в результате наблюдений (измерений) в каком-то натурном эксперименте, либо в результате вычислений. Кроме того, может оказаться, что функция задается формулой и вычисления ее значений по этой формуле очень трудоемки, поэтому желательно иметь для функции более простую (менее трудоемкую для вычислении) формулу, которая позволяла бы находить приближенное значение рассматриваемой функции с требуемой точностью в любой точке отрезка. В результате возникает следующая математическая задача.

Пусть и» отрезке задана сетка со



и в ее узлах заданы значения функции , равные


.


Требуется построить интерполянту — функцию , совпадающую с функцией в узлах сетки:


.


Основная цель интерполяции — получить быстрый (экономичный) алгоритм вычисления значений для значений , не содержащихся в таблице данных.

2. Интерполяция по Ньютону

Дана табличная функция:

i

0

1

2

..

..

..

n


Или


, (1)


Точки с координатами называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например, , причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:



где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен через значение в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах


,


известны значения функции . Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения


, ,.


Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения


.


По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:


,

,


Таким образом, разделённая разность -го порядка на участке может быть определена через разделённые разности -го порядка по рекуррентной формуле:


. (3)


где , , - степень многочлена.

Максимальное значение равно . Тогда и разделенная разность n-го порядка на участке равна


,


т.е. равна разности разделенных разностей -го порядка, разделенной на длину участка .

Разделенные разности



являются вполне определенными числами, поэтому выражение (1) действительно является алгебраическим многочленом -й степени. При этом в многочлене (1) все разделенные разности определены для участков , .

При вычислении разделенных разностей принято записывать их в виде таблицы





























Разделенная разность -го порядка следующим образом выражается через значения функции в узлах:


. (1)


Эту формулу можно доказать методом индукции. Нам потребуется частный случай формулы (1):



Интерполяционным многочленом Ньютона называется многочлен



Рассмотренная форма полинома Ньютона носит название первой интерполяционной формулы Ньютона, и используется, обычно, при интерполировании вначале таблицы.

Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции yi, i=0,1,…n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (2). Это удобно на практике и ускоряет процесс вычислений.


Программирование функции формулы Ньютона


Случайные файлы

Файл
42883.rtf
62100.doc
onehalf.DOC
129244.rtf
43590.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.