Готовый вариант 18 (RGR_1_rel)

Посмотреть архив целиком

5


55



МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РФ


ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ


Факультет автоматики и вычислительной техники


Кафедра ТиСМ







Задание К-1

«Определение скорости и ускорения точки по заданным уравнениям ее движения».


Шифр 70, вариант 18







Выполнил студент группы У-32: Шиляев Д.А.

Проверила к.т.н. доцент: Заикина В.З.


Киров 2002


Задание: По заданным уравнениям движения точки М установить вид ее траектории и

для момента времени t = t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.


Исходные данные:


Решение:


Для нахождения траектории точки, возведем в квадрат и приравняем левые части уравнений движения, предварительно выделив из них cos и sin соответственно, в результате получим:


- траектория точки в координатной форме.

Траектория представляет из себя окружность радиуса r=3 см.


Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:



По найденным проекциям определяются модуль скорости и модуль ускорения точки:


Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направления и совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки: ; Т.к. радиус кривизны известен, но в качестве проверки применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):


Координаты (см)

Скорость (см/с)

Ускорение (см/с2)

кривизны (см)

x

y

Vx

Vy

V

Wx

Wy

W

Wn

2.5

5.6

-5.4

3.2

6.3

-12

-8.3

14.6

5.5

13.5

2.922


Найденный радиус кривизны совпадает с определенным из уравнения траектории точки.


На рисунке показано положение точки М в заданный момент времени

Дополнительное задание. Определение скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения добавляется 3-е уравнение.


Исходные данные:


Решение:


Определим пространственную траекторию точки в координатной форме:


- траектория точки в координатной форме.


Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:



По найденным проекциям определяются модуль скорости и модуль ускорения точки:


Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направления и совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки: ; Т.к. радиус кривизны не известен, применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):


Координаты (см)

Скорость (см/с)

Ускорение (см/с2)

кривизны (см)

x

y

z

Vx

Vy

Vz

V

Wx

Wy

Wz

W

Wn

2.5

5.6

3.5

-5.4

3.2

3.5

7.2

-12

-8.3

0

14.6

5.3

15.5

3.6


5


5



Случайные файлы

Файл
20618.rtf
153981.rtf
159102.rtf
CURSDLY.DOC
10802.rtf