Синергетика как естественная наука о структурных преобразованиях в открытой диссипативной нелинейной системе (10579)

Посмотреть архив целиком










КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ:

"Концепции современного естествознания"

Синергетика как естественная наука о структурных преобразованиях в открытой диссипативной нелинейной системе


Содержание


Введение

Глава I. Синергетика в современной науке

1.1 Самоорганизующиеся системы как предмет изучения синергетики

1.2 Подходы к изучению синергетики

1.3 Диалогичность синергетики

Глава II. Закономерности самоорганизации

2.1 Свертывание сложного

2.2 Сверхбыстрое развитие процессов в сложных системах

2.3 Пути развития сложных систем

2.4 Проблемы коэволюции

2.5 Детерминация процессов эволюции из будущего

2.6 Роль хаоса в эволюции

2.8 Законы объединения сложных структур

2.9 Пульсирующий ритм развития сложных систем

2.10 Возможности трансформации путей развития сложных систем

Глава III. Модели самоорганизации в науках о человеке и обществе

Заключение

Список использованной литературы


Введение


В условиях современного мира, информационной революции и компьютеризации, успехов математического моделирования сложных социоприродных процессов и вычислительного эксперимента неправомерно пользоваться старыми методами и моделями. Старые методы основаны на образцах линейного мышления и линейных приближениях, на экстраполяциях от наличного. Они часто связаны с чрезмерным усложнением модели, стремлением принять во внимание и включить в нее как можно большее число параметров. Прежние методологические подходы к моделированию сложных социальных процессов не учитывают, или по крайней мере, недооценивают, неоднозначность будущего, факторы детерминации эволюционных процессов из будущего, конструктивность хаотического начала в эволюции, роль быстрых процессов в развитии сложного и многое другое. Размываются чёткие границы между практической и познавательной деятельностью. В системе научного знания происходят интенсивные процессы дифференциации и интеграции знания, развиваются комплексные и междисциплинарные исследования, новые способы и методы познания, методологические установки, появляются новые элементы картины мира, выделяются новые, более сложные типы объектов познания, характеризующиеся историзмом, универсальностью, сложностью организации, которые раньше не поддавались теоретическому моделированию. Одно из таких новых направлений в современном естествознании представлено синергетикой, которая является теорией эволюции и самоорганизации сложных систем мира. Синергетика как теория нестационарных, эволюционирующих структур имеет под собой сегодня солидную основу в виде результатов нелинейного анализа, математического моделирования и вычислительного эксперимента. Современное состояние развития синергетического знания позволяет вести обоснованный поиск и находить конструктивные принципы коэволюции сложных систем мира. Синергетика радикально изменяет наше видение мира, разрушает прежние интеллектуальные табу и стереотипы мышления (страх перед сложным, негативное отношение к нестабильности и хаосу, экспоненциальность роста научной информации и народонаселения Земли и т.п.). В данной работе раскрывается понятие синергетики, её предмет, задачи и методология, даётся характеристика сложным самоорганизующимся системам, а также делается попытка показать, как, выступая в качестве современной парадигмы эволюции, синергетика, поможет сказать, что конкретно происходит или будет происходить в мире, какие общие ориентиры синергетика может дать для научного поиска, для прогнозирования и моделирования процессов в сложных социальных и биологических системах.


Глава I. Синергетика в современной науке


В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название "синергетика". Создателем синергетического направления и изобретателем термина "синергетика" является профессор Штутгартского университета и директор Института теоретической физики и синергетики Герман Хакен.

По Хакену, синергетика занимается изучением систем, состоящих из большого (очень большого, "огромного") числа частей, компонент или подсистем, одним словом, деталей, сложным образом взаимодействующих между собой. Слово "синергетика" и означает "совместное действие", подчеркивая согласованность функционирования частей, отражающуюся в поведении системы как целого.

Подобно тому, как предложенный Норбертом Винером термин "кибернетика" имел предшественников в кибернетике Ампера, синергетика Хакена также имела своих "предшественниц" по названию: синергетику Ч. Шеррингтона, синергию С. Улана и синергетический подход И. Забуского.

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

С. Улам был непосредственным участником одного из первых численных экспериментов на ЭВМ первого поколения - проверке гипотезы равнораспределения энергии по степеням свободы. Эксперимент, проведенный над числовым аналогом системы кубических осцилляторов, привел к неожиданному результату, породив знаменитую проблему Ферми - Пасты - Улама: проследив за эволюцией распределения энергии по степеням свободы на протяжении достаточно большого числа циклов, авторы не обнаружили ни малейшей тенденции к равнораспределению. С. Улам, много работавший с ЭВМ, понял всю важность и пользу "…синергии, т.е. непрерывного сотрудничества между машиной и ее оператором", осуществляемого в современных машинах за счёт вывода информации на дисплей.

Решение проблемы Ферми - Пасты - Улама было получено в начале 60-х годов М. Крускалом и Н. Забуским, доказавшим, что система Ферми - Пасты - Улама представляет собой разностный аналог уравнения Кортевега - де Вриза и что равнораcпределению энергии препятствует солитон (термин, предложенный H. Забуским), переносящий энергию из одной группы мод в другую. Реалистически оценивая ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, И. Забуский пришел к выводу о необходимости единого синтетического подхода. По его словам, "синергетический подход к нелинейным математическим и физическим задачам можно определить как совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений".

Появление нового междисциплинарного направления встретило, как принято теперь говорить, неоднозначный прием со стороны научного сообщества. Дебаты между приверженцами синергетики и ее противниками по накалу страстей напоминали печально знаменитую сессию ВАСХНИЛ или собрания, на которых разоблачали и осуждали буржуазную лженауку кибернетику. Хакена обвиняли в честолюбивых замыслах, в умышленном введении легковерных в заблуждение. Утверждалось, будто кроме названия (у которого, как было сказано выше, также имелись предшественники), синергетика напрочь лишена элементов новизны. Предложенном Хакеном название нового междисциплинарного направления, лапидарное и выразительное, привлекало к новому направлению гораздо больше внимания, чем любое "правильное", но "скучное" и понятное лишь узкому кругу специалистов, название.

В чем только ни упрекали новое научное направление его противники и (не всегда добросовестные) критики: они утверждали, будто синергетика - детонат пустого понятия, и синергетика не имеет ни своего предмета, ни присущего только ей метода исследования, что она излишне математизирована и представляет собой одну из разновидностей физикализма, не обладает непременным атрибутом науки - прогностической силой, развивается не интенсивно, а экстенсивно. Но вот минули три десятилетия, заполненные неустанными трудами профессора Хакена, его сотрудников, учеников и единомышленников, и со всей очевидностью выяснилось, что все опасения, сомнения и упреки несостоятельны и развеялись, как утренний туман. Современная синергетика стала признанным междисциплинарным направлением научных исследований, которое занимается изучением сложных систем, состоящих из многих элементов, частей, компонентов, которые взаимодействуют между собой сложным (нелинейным) образом.


1.1 Самоорганизующиеся системы как предмет изучения синергетики


Предметом синергетики являются сложные самоорганизующиеся системы. Система называется самоорганизующейся, если она без специфического воздействия извне обретает какую - то пространственную, временную или функциональную структуру. Основными свойствами самоорганизующихся систем являются открытость, нелинейность, диссипативность:

Открытость. Открытые системы - это такие системы, которые поддерживаются в определённом состоянии за счёт непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся к однородному равновесному состоянию. Открытые системы - это системы необратимые; в них важным оказывается фактор времени. В открытых системах ключевую роль, наряду с закономерным и необходимым, могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается.

Нелинейность. Так как большинство систем во Вселенной носит открытый характер, то доминирующими оказываются не стабильность и равновесие, а неустойчивость и неравновесность. Неравновесность, в свою очередь, порождает избирательность системы, её необычные реакции на внешние воздействия среды. Неравновесные системы имеют способность воспринимать различия во внешней среде и "учитывать" их в своём функционировании. На нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда совместные действия причин А и В вызывают эффекты, которые не имеют ничего общего с результатами воздействия А и В по отдельности. Процессы, происходящие в нелинейных системах, часто носят пороговый характер - при плавном изменении внешних условий поведение системы изменяется скачком. Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е. система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые, в свою очередь, обуславливают изменения в самой этой системе. Последствия такого рода взаимодействия открытой системы и её среды могут быть самыми неожиданными и необычными.


Случайные файлы

Файл
61050.rtf
47709.rtf
16381.rtf
150886.rtf
64646.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.