Методи исследования клеток (10027)

Посмотреть архив целиком

План


Вступление

Раздел I Микроскопические исследования как метод познания клетки

1.1 Световая микроскопия и ее возможности

1.1.1 Обычная оптическая микроскопия

1.1.2Флуоресцентная микроскопия

1.1.3 Фазово-контрастная и интерференционная микроскопия

1.2 Электронная микроскопия

1.3 Рентгеноскопия

Раздел II Методы изучения химической среды живых клеток

2.1 Использование ядерного магнитного резонанса (ЯМР) для определения химических условий в живых клетках

2.2 Использование внутриклеточных электродов

2.3 Использование светоизлучающих индикаторов

Раздел III Методы культивирования клеток и определения их состава

3.1 Методы культивирования клеток

3.2 Фракционирование клеточного содержимого

Раздел IV. Технология рекомбинантных ДНК

4.1 Выделение и фракционирование ДНК

4.2 Расщепление ДНК рестрицирующими нуклеазами

4.3 Секвенирование ДНК

Вывод

Список использованной литературы



Вступление


Клетки очень малы по размеру и сложно устроены: трудно рассмотреть их структуру, трудно определить молекулярный состав и еще труднее установить, как функционируют их отдельные элементы. Для изучения клеток разработано множество экспериментальных методов, возможности которых определяют уровень наших знаний в этой области. Успехи в изучении биологии клетки, включая наиболее удивительные достижения последних лет, как правило, связаны с применением новых методических подходов. Поэтому для понимания клеточной биологии необходимо иметь некоторое представление о соответствующих экспериментальных методах.

Целью нашей работы мы поставим рассмотрение современных методов, используемых для изучения клеток. Мы рассмотрим современные методы, используемые для изучения клеток. Мы начнем знакомиться с теми из них, которые позволяют изучать клетку как единое целое, и затем обратимся к анализу составляющих клетку макромолекул. Отправной точкой станет микроскопия, поскольку клеточная биология началась со световой микроскопии, и этот метод до сих пор остается весьма эффективным инструментом исследования, наряду с более современными устройствами для получения изображения, основанными на электронных пучках или иных формах излучения. От пассивного наблюдения мы постепенно перейдем к методам, предполагающим активное вмешательство: рассмотрим, как клетки различных типов могут быть отделены от ткани и при этом сохранять способность расти, узнаем, как клетки можно разрушить, а клеточные органеллы и составляющие их макромолекулы выделить в чистом виде. И, наконец, мы изложим суть технологии рекомбинантных ДНК, благодаря которой стало возможным выделять, секвенировать и манипулировать генами и, следовательно, изучать механизмы их действия в клетке. Также мы систематизируем их, выделим основные вехи, которые удалось достигнуть благодаря их применению.

Раздел I. Микроскопические исследования как метод познания клетки


Диаметр типичной клетки животных составляет 10-20 мкм, что в пять раз меньше мельчайшей видимой частицы. Только с появлением совершенных световых микроскопов в начале XIX века удалось установить тот факт, что все ткани животных и растений состоят из отдельных клеток. Это открытие, обобщенное в форме клеточной теории Шлейденом и Шванном в 1838 году, знаменует собой начало клеточной биологии.

Будучи чрезвычайно малыми по размерам, животные клетки к тому же бесцветны и прозрачны: следовательно, открытие их основных структур стало возможным благодаря разработке набора красителей в конце XIX столетия. Именно красители обеспечили достаточный контраст для наблюдения субклеточных структур. Сходная ситуация наблюдалась в начале 40-х годов нашего столетия, когда изобретение мощного электронного микроскопа потребовало новых методов сохранения и окраски клеток. И только после того, как они были разработаны, начала проявляться вся сложность клеточной структуры. В основе микроскопии как методологии до сих пор лежат способы приготовления образца и возможности самого микроскопа.


1.1 Световая микроскопия и ее возможности


1.1.1 Обычная оптическая микроскопия

В общем случае излучение данной длины волны может быть использовано для изучения только таких структур, минимальные размеры которых еще сопоставимы с длиной волны самого излучения. Этот принцип ограничивает возможности любого микроскопа. Предел разрешения светового микроскопа задается длиной световой волны, которая для видимого света лежит в пределах от 0,4 мкм (фиолетовый) до 0,7 мкм (темно-красный). Из этого следует, что самыми маленькими объектами, которые еще можно наблюдать в световой микроскоп, являются бактерии и митохондрии (их ширина ~ 0,5 мкм). Более мелкие элементы клетки искажаются эффектами, вызванными волновой природой света.

Для приготовления постоянного препарата, который можно окрасить и наблюдать в микроскоп, клетки обрабатывают фиксирующим агентом с тем, чтобы иммобилизировать, убить и сохранить их. В современных методах, как правило, используется обработка альдегидами, например, формальдегидом или глутаральдегидом, которые формируют ковалентные связи со свободными аминогруппами белков и, таким образом, сшивают соседние молекулы.

После фиксации ткани обычно режут на очень тонкие "ломтики" (срезы) на микротоме. Срезы толщиной от 1 до 10 мкм помещают на поверхность предметного стекла. В качестве заключающих сред используют парафин или специальную смолу. В жидком виде эти среды пропитывают и окружают фиксированную ткань: затем они затвердевают при охлаждении или за счет полимеризации, образуя твердый блок, который удобно резать на микротоме.

Существует серьезная опасность того, что процедуры фиксации или заключения могут повредить структуру клеток или клеточных макромолекул. Вот почему предложен другой метод приготовления срезов - быстрое замораживание. Замороженную ткань режут на криостате в специальном микротоме, установленном в холодной камере.

В содержимом большинства клеток, состоящих, как правило, на 70% из воды, практически отсутствуют компоненты, способные помешать прохождению световых лучей. Поэтому в естественном состоянии большинство клеток даже после фиксации и приготовления срезов практически невидимы в обычном световом микроскопе. Одна из возможностей их увидеть состоит в окраске клеток красителями.


1.1.2Флуоресцентная микроскопия

Поскольку большинство макромолекул представлены в клетках относительно незначительным числом копий, одна или две молекулы красителя, связанные с макромолекулой, могут оставаться незамеченными. Альтернативный подход к проблеме чувствительности состоит в использовании флуоресценции.

Флуоресцирующие красители поглощают свет одной длины волны и излучают свет другой длины волны, более длинной. Если такое вещество облучить светом, длина волны которого совпадает с длиной волны света, поглощаемого красителем, и затем для анализа использовать фильтр, пропускающий свет с длиной волны, соответствующей свету, излучаемому красителем, флуоресцирующую молекулу можно выявить по свечению на темном поле. Высокая интенсивность излучаемого света является характерной особенностью таких молекул.

Применение флуоресцирующих красителей для окраски клеток предполагает использование специального флуоресцентного микроскопа. Такой микроскоп похож на обычный световой микроскоп, но здесь свет от осветителя, излучаемый мощным источником, проходит через два набора фильтров - один для задержания света перед образцом и другой для фильтрации света, полученного от образца.

Флуоресцентная микроскопия часто используется для выявления специфических белков или других молекул, которые становятся флуоресцирующими после ковалентного связывания с флуоресцирующими красителями. Например, флуоресцирующие красители могут быть связаны с молекулами антител, что сразу же превращает их в высокоспецифические и удобные красящие реагенты, селективно связывающиеся со специфическими макромолекулами на поверхности живой либо внутри фиксированной клетки. Для этой цели обычно используют два красителя - флуоресцеин, который дает интенсивную желто-зеленую флуоресценцию после возбуждения светло-голубым светом, и родамин, обусловливающий темно-красную флуоресценцию после возбуждения желто-зеленым светом.


1.1.3 Фазово-контрастная и интерференционная микроскопия

Возможность потери или нарушения образцов в процессе их приготовления всегда беспокоила микроскопистов. Единственный способ решить эту проблему состоит в изучении живых клеток без фиксации или замораживания. Для этой цели очень полезны микроскопы со специальными оптическими системами.

При прохождении света через живую клетку фаза световой волны меняется согласно коэффициенту рефракции клетки: свет, проходящий через относительно тонкие или относительно толстые участки клетки, такие, как ядро, задерживается, и его фаза соответственно сдвигается по отношению к фазе света, проходящего через относительно тонкие участки цитоплазмы. Как в фазово-контрастном, так и в интерференционном микроскопе используются эффекты интерференции, возникающие при рекомбинации двух наборов волн, которые и создают изображение клеточных структур. Оба типа световой микроскопии широко используются для наблюдения живых клеток.

Простейший способ разглядеть детали клеточной структуры - наблюдать свет, рассеивающийся различными компонентами клетки. В темнопольном микроскопе лучи от осветителя направляются сбоку и при этом в линзы микроскопа попадают только рассеянные лучи. Соответственно клетка выглядит как освещенный объект на темном поле. Одним из основных преимуществ фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать движение клеток в процессе митоза и миграции


Случайные файлы

Файл
180314.rtf
Kompleksni_chisla.doc
147660.rtf
154619.rtf
70281.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.