Готовый вариант 18 (В18)

Посмотреть архив целиком

В 18. Д – 1.

Дано: VA = 0, = 30, f = 0,1, ℓ = 2 м, d = 3 м. Найти: h и .

Решение: Рассмотрим движение камня на участке АВ. На него действуют силы тяжести G, нормальная реакция N и сила трения F.Составляем дифференциальное уравнение движения в проекции на ось X1 : = Gsin - F , (F = fN = fGcos) = gsin - fgcos,

Дважды интегрируя уравнение, получаем: = g(sin - fcos)t + C1 , x1 = g(sin - fcos)t2/2 + C1t + C2 ,

По начальным условиям (при t = 0 x10 = 0 и = VA = 0) находим С1 и С2 : C1 = 0 , C2 = 0,

Для определения VB и используем условия: в т.B (при t = ) , x1 = ℓ , = VB . Решая систему уравнений находим:

x1 = ℓ = g(sin - fcos)2/2 2 = 9,81(sin30 - 0,1cos30)2/2 , = 0,99 c ,

= VB = g(sin - fcos) VB = 9,81(sin30 - 0,1cos30)0,99 = 4,03 м/с ,

Рассмотрим движение камня на участке ВС.На него действует только сила тяжести G. Составляем дифференциальные уравнения движения

в проекции на оси X , Y : = 0 , = G ,

Дважды интегрируем уравнения: = С3 , = gt + C4 ,

x = C3t + C5 , y = gt2/2 + C4t + C6 ,

Для определения С3 , C4 , C5 , C6 , используем начальные условия (при t = 0): x0 = 0 , y0 = 0 , = VBcos , = VBsin ,

Отсюда находим : = С3 , C3 = VBcos , = C4 , C4 = VBsin

x0 = C5 , C5 = 0 , y0 = C6 , C6 = 0

Получаем уравнения : = VBcos , = gt + VBsin

x = VBcost , y = gt2/2 + VBsint

Исключаем параметр t : y = gx2 + xtg ,

2V2Bcos2

В точке С x = d = 3 м , у = h. Подставляя в уравнение VB и d , находим h: h = 9,8132 + 3tg30 = 5,36 м ,

24,032cos230







Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.