Разбегание галактик. Роль этого в эволюции Вселенной (216)

Посмотреть архив целиком













К У Р С О В А Я Р А Б О Т А

по дисциплине «Концепция современного естествознания»

Тема: «Разбегание» галактик. Роль этого в эволюции Вселенной


Оглавление


1.Введение ………………………………………………………….3-4 стр.

2.I. Так, что же есть Вселенная? ………………………………….5-8 стр.

3.II. Закон всеобщего «разбегания Галактик» …………..............9-22 стр.

4.III. Космические монстры ……………………………………23-26 стр.

5.IV. Что же ждет Вселенную в будущем? ….…………………27-29 стр.

6.Заключение ………………………………………………………30 стр.


Введение


О сколько нам открытий чудных

Готовят просвещенья дух

И опыт, сын ошибок трудных,

И гений, парадоксов друг,

И случай, бог изобретатель…

(А.С. Пушкин)


В природе очень много удивительного, и пытаться выделить самое главное занятие неблагодарное. Кто-то полагает, что Жизнь - самое удивительное в Природе, кто-то - что Разум. Если обратиться к неживой природе, то кто-то скажет об удивительных законах микромира, кто-то о процессах самоорганизации и хаосе. Но, наверное, если составлять список, то всегда в десятку самых удивительных феноменов будет попадать расширение Вселенной («разбегание» Галактик1).

Нет человека, который бы в ясную, безлунную ночь, да ещё где-нибудь подальше от больших городов, не испытывал благоговейного восхищения, всматриваясь в бездонную пропасть Вселенной2, усеянную мириадами звёзд. Кажется, что картина эта вечна и неизменна. Но на самом деле Вселенная живёт своей таинственной, но бурной, а иногда и драматичной жизнью.

Открытия последних десятилетий позволяют нам более-менее полно представить картину мироздания. Итак, мы живём на планете Земля. Она входит в систему планет, обращающихся вокруг Солнца. Солнце – одна, и в общем то, рядовая звезда, которая входит в число звёзд, составляющих местную систему звёзд, образующих галактику Млечный путь. Таких (да и не только таких) галактик много. Одна из ближайших к нам – галактика Туманность Андромеды. Названа она так потому, что когда галактики ещё не были открыты, они считались туманностями. И находится она в созвездии Андромеды. Наша галактика и галактика Туманность Андромеды относятся к спиральным галактикам (Фото 1). Глядя на Туманность Андромеды, можно представить, что это наша галактика. Несколько десятков ближайших галактик составляют местную систему. Затем огромные просторы пустоты. Дальше обнаружены другие системы галактик. Размещены они как бы по пчелиным сотам. На фото 2 показан снимок, буквально усеянный галактиками. И так до предела возможностей наших астрономических инструментов.

Говорят, что пространство, а значит и Вселенная, бесконечны. И время не имеет ни начала, ни конца. Трудно здесь что либо возразить. Наверное, так оно и есть. В этом случае и число цивилизаций бесконечно. А здесь как бы и говорить не о чём. Тем не менее, есть основания поискать некоторые пределы в пространстве и времени, которые позволят говорить по крайней мере о нашей Вселенной. И такие пределы есть.


I. Так, что же есть Вселенная?


Вселенная - весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Вселенная, изучаемая астрономией, - часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития (эту часть Вселенной называют Метагалактикой) (Советский энциклопедический словарь, издание 1990 года).

Ранее ученые полагали, что пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. И только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы можно рассматривать как «примеси».

Межзвездный газ в галактиках обычно составляет несколько процентов от полной массы звезд. Больше всего газа встречается в неправильных галактиках (иногда до 50%) и меньше всего в эллиптических галактиках.

Межзвездная пыль лучше всего заметна в галактиках, диск которых виден нам с «ребра». Межзвездная пыль, находящаяся в плоскости диска, поглощает свет звезд, и галактика из-за этого кажется пересеченной темной полосой. Межзвездная пыль - это твердые микроскопические частицы вещества размером меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени «ориентируются», то есть направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Если по своему составу галактики сходны, то структура наблюдаемых галактик различна. Галактики, в основном, бывают трёх видов: эллиптические (E), спиральные (S) и неправильной формы (Ir), показанные на фото 3, 4 и 5. Бывают галактики и весьма причудливых форм (Фото 6).

Проще всего выглядят эллиптические галактики: они ровные, однородные по цвету и симметричные. Их почти совершенное строение наводит на мысль об их существенной простоте, и действительно, параметры эллиптических галактик оказалось легче измерить и подыскать под них теоретические модели, чем сделать это для более сложных родственников этих объектов.

Рассмотрим, например, строение типичной эллиптической галактики. В ее центре находится яркое ядро, окруженное размытым сиянием, яркость которого падает по мере удаления от центра. Как и у всех эллиптических галактик, падение яркости описывается простой математической формулой. Форма контура галактики тоже остается почти одинаковой на всех уровнях яркости. Все изофоты представляют собой почти идеальные эллипсы, центрированные в точности на ядро галактики. Направления больших осей и отношения большой оси к малой почти одинаковы у всех эллипсов.

Фундаментальная простота эллиптических галактик согласуется с предположением о том, что они управляются небольшим числом сил. Орбиты звезд гладкие и хорошо перемешаны и ничто, кроме гравитации, не влияет на их расположение, и никакое непрерывное звездообразование не разрушило их правильности.

В отличие от эллиптических галактик для спиральных характерно наличие диска и балджа (утолщения). Спиральные рукава уступают диску и балджу по количеству содержащихся в них звезд, хотя и являются важными и выдающимися частями галактики. Диск спиральной галактики довольно плоский. Видимые с ребра галактики говорят о том, что толщина типичного диска составляет около 1/10 его диаметра.

С помощью методов моделирования на ЭВМ было доказано, что спиральные галактики представляют собой быстро вращающиеся звездные системы. Причиной образования балдж, которые обладают большинством структурных свойств эллиптических галактик, является то, что звезды начинают образовываться сначала в центральных областях галактик, где плотность самая высокая.

Спиральная структура спиральных галактик возникает из-за того, что внутренняя часть галактики вращается со скоростью, отличной от скорости внешней части и рукава постепенно закручиваются в спиральный узор. Для галактик с возрастом, характерным для окружающих нас галактик, число оборотов узора должно быть очень большим - примерно равным возрасту, деленному на средний период вращения - около 100. Однако у реальных спиральных галактик - по крайней мере у тех, что имеют четкие непрерывные спиральные ветви, наблюдаемая закрутка спирального узора составляет лишь на один-два оборота. Встает вопрос: как это объяснить? Проблема до настоящего времени не разрешена. Ученые отдают предпочтение магнитной, волновой и взрывной гипотезам, учитывающим астрофизическую сторону проблемы.

У многих спиральных галактик есть еще одна замечательная структурная особенность - концентрация звезд в форме бруска (бара), пересекающая ядро и простирающаяся симметричным образом в обе стороны. Данные измерений скоростей в них показывают, что бары вращаются вокруг ядра как твердые тела, хотя, разумеется, они на самом деле состоят из отдельных звезд и газа. Бары, встречающиеся в галактиках типа S0 или Sa, более ровные и состоят исключительно из звезд, в то время как бары в галактиках типов Sb, Sc и Irr часто содержат много газа и пыли. Все еще идут споры о движениях газа в этих барах. Некоторые данные свидетельствуют о том, что газ течет наружу вдоль бара, а по другим данным, он течет внутрь. В любом случае, существование баров не удивляет астрономов, изучающих динамику галактик. Численные модели показывают, что неустойчивости в диске вращающейся галактики могут проявляться в форме бара, напоминающего наблюдаемые.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.