Обмін вуглеводів (166217)

Посмотреть архив целиком

План


  1. Ферментативне перетворення вуглеводів у харчовому тракті людини

  2. Поширення вуглеводів у організмі людини

  3. Процеси перетворення вуглеводів на клітинному рівні:

3.1. Синтез глікогену з глюкози (глікогенез)

  1. Розпад глікогену до глюкози (глікогеноліз)

  1. Гліколіз (анаеробний розпад)

  2. Дихання (аеробний розпад вуглеводів)

  1. Енергетичні ефекти процесів


Вуглеводи складають біля 70 % харчового раціону людини (борошно, крупи, картопля – крохмалевмісні; мед, ягоди, фрукти – містять сахарозу, глюкозу і фруктозу), являючись основним джерелом енергії для організму. Поширений у природі полісахарид клітковина тільки частково засвоюється організмом людини за допомогою бактерій товстого кишечника. Основною функцією клітковини є забезпечення перистальтики харчового тракту, стимулювання секреторної діяльності, сприяння синтезу вітаміну К за допомогою кишечної мікрофлори.

Поскільки вуглеводи засвоюються у вигляді моноцукридів, то складні вуглеводи (дицукриди, поліцукриди) повинні попередньо розщепитися. Гідролітичне розщеплення проходить під впливом ферментів що носять загальну назву глікозидази. Оптимум дії глікозидаз лежить в нейтральному та слабколужному середовищі (виключення амілаза слини – слабкокисле), що і обумовлює певну локалізацію процесів розщеплення у харчовому тракті людини.


Відділ

травлення

Оптимум дії фер-ментних систем (рН)

Процеси

Ферменти

Ротова порожнина

6.5–7.0

Розщеплення крохмалю до декстринів, частково мальтози до глюкози і фруктози.

амілаза слини, мальтаза.


Стравохід

7

Процеси розщеплення відсутні у зв‘язку з швидким проходженням субстратів.


Шлунок

1–2

Процеси розщеплення відсутні у зв‘язку з інактивацією ферментів «кислим» середовищем.


12–пала кишка

7.0–7.5

Остаточне розщеплення декстринів до дисахари-дів.

ферменти підшлункової залози: кінцева декстриназа, –амілаза, мальтаза, сахараза, лакта-за.

Тонкий кишечник

7.0–7.5

Розщеплення дисахаридів до моносахаридів. Посту-пання моносахаридів у кров.

Кінцева декстриназа, –амілаза, мальтаза, сахараза, лакта-за.

Товстий кишечник


Розщеплення клітковини до целобіози і глюкози. Синтез вітаміну К. Прохо-дять процеси збродження вуглеводневих залишків з виділенням СО2, Н2, СН4. Формування калових мас.

Целюлаза, ферментні системи бактерій.


В тонкому кишечнику відбуваються процеси всмоктування моносахаридів через систему мембран у кров‘яне русло. Для процесу всмоктування характерно: знач-ні енергетичні витрати організму (активний фізіологічний процес); ізомеризація (трансформація, перетворення) суміші простих вуглеводів (98 %) у глюкозу; транспортування глюкози через мембрани у формі глюкозо-фосфату (навідь проти значень її концентрації у кров‘яному руслі).

З током крові моноцукриди через воротну вену потрапляють у печінку, де вико-ристовуються для біосинтезу глікогену (3–5 %), біосинтезу жирів (30–35 %), окислюються до вуглекислого газу і води (60–70 %). Певна, фізіологічно нормальна кількість глюкози (120 мг на 100 см3), є невід‘ємною складовою крові, забезпечуючи гомеостаз організму. Вона необхідна для нормального функціону-вання головного мозку, м‘язів серця, нервової тканини (глюкоза –головне джере-ло енергії).

При підвищеній концентрації глюкози в крові (більше 140 мг) говорять про гіперглікемію. Викликається вживанням продуктів багатих на вуглеводи (аліментарна гіперглікемія); недостатнім синтезом інсуліну (цукровий діабет); понад-нормовим синтезом адреналіну і глюкагону. Стан гіперглікемії приводить до ожиріння.

При пониженій концентрації глюкози в крові (менше 120 мг) говорять про гіпоглікемію. Викликається тривалим голодуванням; великими фізичними навантаженнями; недостатнім синтезом глюкагону і адреналіну; понаднормовим синтезом інсуліну. Приводить до деструктивних змін в головному мозку, нервовій тканині, нирках. Стан тривалої гіпоглікемії приводить до виснаження організму і смерті.


Отже:


Основна роль в процесах обміну вуглеводів належить печінці, діяльність якої регулюється нервовою і ендокринною системами (інсулін, адреналін–глюкагон).

У випадку повного енергетичного забезпечення організму, з надлишку глюкози синтезується глікоген. Процеси глікогенезу проходять в клітинах різних органів і тканин, але найбільшу здатність до накопичення мають клітини печінки. Глікоген печінки є основним резервним джерелом вуглеводів для організму.


3. Процеси перетворення вуглеводів на клітинному рівні


3.1 Глікогенез (синтез глікогену з глюкози)


  1. Глюкоза, яка з током крові надходить у печінку активується за допомогою ферменту гексокінази і АТФ, перетворюючись в глюкозо-6-фосфат:

HO OH

CH2OH CH2O–P=O

H H H АТФ АДФ H H H

OH OH H OH OH OH H OH

H OH H OH

Глюкоза Глюкозо–6–фосфат

2. Глюкозо-6-фосфат під дією фосфоглюкомутази перетворюється на глюкозо-1-фосфат:

HO OH

CH2O–P=O CH2OH

H H H H H H

фосфоглюкомутаза OH

OH OH H OH OH OH H O–P=O

H OH H OH OH

Глюкозо–6–фосфат Глюкозо–1–фосфат

  1. Глюкозо-1-фосфат повторно активується УТФ (уридинтрифосфатом) з вико-ристанням енергії двох макроергічних зв‘язків, утворюючи активовану ури-дин-дифосфатглюкозу.

УРИДИН


CH2OH CH2OH OH O

H H H H H H P

OH УТФ Н4Р2О7 O

OH OH H O–P=O OH OH H O–P=O

H OH OH H OH OH

Глюкозо–1–фосфат УДФ–глюкоза

4. Поскільки синтез глікогену проходить «затравочним» методом (у ролі затравки використовується залишок молекули глікогену), то активована УДФ-глюкоза приєднується до затравки за допомогою глікоген-синтетазних (утворює 1,4–зв‘язки) та трансглюкозилазних (утворює 1,6–зв‘язки) ферментних систем, збіль-шуючи молекулу глікогену на одну молекулу глюкози:


УРИДИН

CH2OH OH

H H H P О

O (С6H10O5)n УДФ

OH OH H O–P=O (C6H10O5)n+1

H OH OH

УДФ–глюкоза затравочний глікоген


Висновок:

синтез глікогену енергоємний процес (затрачається 2-і молекули АТФ); автокаталітичний (великі кількості вільного глюкозо-6-фосфату акти-вують глікогенсинтетазу–процеси глікогенезу посилюються; підвищені кількості УДФ інактивують глікогенсинтетазу–процеси глікогенезу припиняються). Утворення глікогену проходить з максимальною швидкістью через 30–40 хв. після прийому їжі. Процеси глікогенезу проходять інтенсивніше після активної м‘язевої роботи.


3.2 . Глікогеноліз


При м‘язевій роботі, сильному переохолодженні, голодуванні, емоційному збудженні відбувається посилене споживання клітинами глюкози крові. Рівень останньої повинен був би знижуватися. Проте, у здорових людей при різних функціональних станах, рівень глюкози постійний (120 мг/100см3) з незначними відхиленнями. Стабільний рівень глюкози у крові за різних функціональних станів забезпечується протіканням процесів глікогенолізу (розпад глікогену до глюкози). Глікогеноліз може проходити двома шляхами: гідроліз–повільний, малоефективний процес; фосфороліз–основний шлях розпаду глікогену.

Фосфороліз проходить за участю фосфорилазних ферментних систем, які на першому етапі відщеплюють від молекули глікогену кінцеві залишки молекул глюкози у вигляді глюкозо-1-фосфату:



1.

CH2OH

H H H

(C6H10O5)n H3PO4; (C6H10O5)n-1 OH

фосфорилаза OH OH H O–Р H OH OH

Глікоген Глюкозо–1–фосфат

2. Остання швидко ізомеризується в глюкозо-6-фосфат:

НО ОН

CH2OH CH2O–Р=О

H H H H H H

OH фосфоглюкоізомераза

OH OH H O–P=O OH OH H OН

H OH OH H OH

Глюкозо–1–фосфат Глюкозо-6-фосфат

  1. Глюкозо-6-фосфат розщеплюється фосфатазами до вільної глюкози і фосфорної кислоти:

НО ОН

CH2O–Р=О CH2

H H H H H H

OH фосфатаза + Н3РО4

OH OH H O–P=O OH OH H OН

H OH OH Н2О H OH

Глюкозо–6–фосфат Глюкоза


Висновок:

постійна концентрація глюкози у крові підтримується процесами глікогенолізу які знаходяться під контролем ендокринної системи: гормон глюкагон стимулює процеси розпаду глікогену до глюкози у печінці а адреналін– у м‘язах та інших внутрішніх органах. Процеси глікогенолізу прискорюються при посиленій м‘язевій роботі, переохолодженні, емоційному збудженні. Незалежно від енерготрат організму завжди в печінці залишається певна кількість глікогену (резерв для роботи головного мозку, серцевого м‘язу і «затравочний глікоген»).

Підтримання стану гомеостазу та виконання певних фізичних вправ приводить до посилення процесів розпаду глікогену та окислення глюкози. Останнє може відбуватися за безкисневих (анаеробних) умов та у присутності кисню (аеробне окислення).


Случайные файлы

Файл
18227.rtf
160242.rtf
112910.rtf
164998.doc
~1.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.