Воздействия на туманы с помощью тепловых источников (151425)

Посмотреть архив целиком

ЛЕКЦИЯ. ВОЗДЕЙСТВИЯ НА ТУМАНЫ С ПОМОЩЬЮ ТЕПЛОВЫХ ИСТОЧНИКОВ. ВОЗДЕЙСТВИЯ НА ОБЛАКА НА БОЛЬШИХ ПЛОЩАДЯХ С ЦЕЛЬЮ УВЕЛИЧЕНИЯ СУММ ОСАДКОВ. РАССЕЯНИЕ ПЕРЕОХЛАЖДЕННЫХ СЛОИСТООБРАЗНЫХ ОБЛАКОВ И ТУМАНОВ НА БОЛЬШИХ ПЛОЩАДЯХ


Тепловое рассеяние туманов


Исторически первым успешным методом рассеяния туманов был тепловой метод. Применялся он английскими ВВС во Вторую Мировую войну на ряде аэродромов для просветления туманов путем сжигания керосина в бочках, установленных вдоль ВВП. (Несколько позже во Франции, правда для иной цели, применялся метеотрон – большая система мощных газовых горелок, позволяющая стимулировать развитие конвективной струи с целью создания кучевых облаков). Дальнейшие работы в этом направлении позволили создать теоретическое обоснование метода теплового просветления туманов и найти технически наиболее приемлемые решения.

Как показывают измерения и расчеты, при нагревании тумана число капель и его водность непрерывно убывают, что приводит к увеличению дальности видимости, т.е. его просветлению. При этом, для существенного увеличения видимости требуется сравнительно небольшой прогрев тумана. В характерных случаях при положительных температурах нагрев тумана на 0,5ºС увеличивает видимость со 100 до нескольких сотен метров, а при нагреве на 0,8–1ºС туман почти или полностью исчезает в зоне прогрева.

Однако надо учесть, что при сжигании углеводородного топлива наряду с теплом генерируется и водяной пар, который поступает в прогреваемую зону. Этот дополнительный пар при низких температурах приводит к увеличению водности тумана, т.е. его сгущению или может даже вызвать создание тумана при первоначальном отсутствии. Все зависит от влаготворной способности топлива . Так, при сгорании 1 г керосина выделяется 42 кДж тепла и 1,4 г пара, т.е. = 1,4 г∙г–1. Переход от сгущения тумана к просветлению при использовании керосина произойдет при Т ≥ –29ºС. При более низких температурах прогрев керосином всегда вызовет сгущение или создание тумана. Таким образом, наилучшим было бы использование «сухого» тепла с = 0, например, радиационных потоков, которое при любых температурах просветляет туман.

Расчеты показывают, что выгодно вносить тепло в весь просветляемый объем над ВПП равномерно. В этом случае расход топлива можно сократить примерно в 10 раз по сравнению с ситуацией, когда тепло поступает в просветляемый объем от нагретой поверхности ВПП ( для чего ее надо нагреть на = 30–40ºС).

Транспортировка тепла непосредственно в просветляемый объем тумана над ВПП может быть осуществлена с помощью турбореактивных двигателей, которые устанавливаются в ряд сбоку от ВПП, обладают высокой теплопроизводительностью и способностью создавать струи тепла с большой скоростью в заданном направлении. Рассеяние туманов будет тем эффективнее, чем выше температура тумана. При этом, достаточно, в случае мощных туманов, делать просветление не до его верхней границы, а в слое порядка 100 м толщиной, что обеспечит взлет и посадку самолетов на хорошо оснащенных техническими средствами аэродромах.

Такой метод теплового просветления туманов успешно применяется, например, на аэродроме Орли (Франция). Сильный ветер уменьшает эффект просветления, и чем плотнее туман (чем выше его водность), тем труднее его рассеять. Поэтому метод более эффективен при воздействии на радиационные туманы, чем адвективные.


Воздействия на переохлажденные облака на больших площадях с целью увеличения суммы осадков


Наиболее массовые натурные эксперименты по воздействию на переохлажденные облака на больших площадях (более 1000 км2) с целью увеличения сумм осадков проведены на специально созданном в 1959 г. на Украине Экспериментальном метеорологическом полигоне (ЭМП). Основу ЭМП (рис. 10.5) составляли две площадки: контрольная площадка (КП), имеющая размеры 30×75 км, и опытная площадка (ОП) таких же размеров. КП располагалась западнее на 30 км от ОП и не подвергалась воздействиям, где ход метеорологических процессов был естественным. ОП или мишень служила для воздействий, которые производились западнее ее границы с учетом режима ветра, так чтобы в полной мере проявиться над площадкой. ЭМП располагался в засушливой степной зоне Украины, имеющей годовые суммы осадков 300–500 мм, абсолютные высоты около 230 м с максимальной разностью в 22 м.


Рис. 10.5. Схема расположения КП и ОП Украинского ЭМП


Оборудование ЭМП включало: 1) осадкомерную сеть ОП – 300 постов и КП –270 постов (один пост на квадрат со стороной около 3,5 км); 2) два самолета ИЛ–14; 3) метеорологические радиолокаторы; 4) привязной аэростат с высотой подъема до 500 м; 5) аэрологическую станцию в Кривом Роге.

Воздействия проводились на конвективные облака (лето) и облака слоистых форм (зима).

Оценка успешности воздействий на конвективные облака. Получены следующие данные о средних значениях летних (май–август) осадков R на обеих площадках за годы до начала воздействий и за три года с воздействиями (1960–62):


Площадка

До воздействия

С воздействиями

, мм

Отношение

Опытная

32,7 мм

41,1 мм

8,4 мм

1,26

Контрольная

44,5 мм

46,2 м

1,7 мм

1,04


Из этих данных видно, что на опытной площадке (мишени) произошло увеличение осадков в годы с воздействием на 8,4 мм, тогда как на контрольной только на 1,7 мм. Следовательно, их разность, равная 6,7 мм, может считаться оценкой увеличения осадков за счет воздействий. В относительном виде эта разность равна 1,22, что позволяет считать, что летние суммы осадков возросли в среднем на 22%. Увеличение осадков на ОП в каждые из 3 лет и месяцев воздействий было больше, чем на КП, т.е. эффект воздействий был положителен во все месяцы.

В качестве другой оценки успешности воздействий использовалась регрессия между RОП и RКП, полученная за 1955–59 гг., т.е. до «воздействия».


RОП = 0,57 RКП + 7,3 ± 9,9 (r =0,83 ± 0,08)


По этой регрессии для лет воздействий (1960–62) сначала рассчитаны по данным RКП ожидаемые значения RОП, а затем найдены разности = RОП(фактич.) – RОП(по регрессии), которые должны были быть положительными из-за воздействий. Значения (мм) оказались следующими:

Год

май

июнь

июль

август

лето

1960

13,9

16,3

1,4

47,0*

75,8

1961

51,6*

8,8

1,6

10,3

45,5

1962

2,6

16,8

9,8

3,5

32,7






89,6


Так как утроенная ошибка регрессии 3=3∙9,9 мм=29,7 мм, то следует считать, что положительные значения статистически значимы только, если >29,7 мм. Это наблюдалось в мае 1961 г. (=51,6 мм); в августе 1960г (=47,0 мм) и в целом за лето 1960 и 1961 гг. В остальные месяцы разности статистически не значимы, т.е. их можно считать нулевыми, что означает отсутствие результата воздействий. Более того, даже в среднем за лето 1962 г. =–32,7 мм. Отрицательные разности говорят о том, что естественные междугодовые колебания осадков в отдельные месяцы и в целом за лето 1962 г. превысили в эти месяцы и лето эффект от воздействий.

Хотя в целом за три лета 1960–62 гг. =89,6 мм статистически значимо, т.е. на ОП произошло с вероятностью около 0,99 увеличение осадков, проведенный анализ убедительно показывает, что для получения надежных статистических выводов требуется увеличение рядов наблюдений. Одновременно видны трудности создания объективных и надежных критериев оценки успешности воздействий.

Однако количество выпавших дополнительных осадков, выраженное в тоннах воды, выглядит более впечатляющим. В сумме за 73 успешных воздействия выпало 2,75 млн. тонн, что дает среднее за случай значение в 38000 тонн. Максимальное выпадение за случай составило 993000 тонн. Это означает, что 1 кг СО2 вызывал в среднем 10000 тонн осадков. Так как на каждое облако в среднем сбрасывалось 4 кг СО2, то на единицу массы СО2 приходится 107 единиц массы воды осадков.

Оценка успешности воздействий на облака слоистых форм. Воздействия на эти формы облаков проводились в холодный период с ноября по февраль. Были рассчитаны повторяемости п различных градаций дополнительных осадков R для 47 случаев воздействий, которые оказались следующими:


R, мм

<0,5

1,5–0,9

1,0–1,5

1,6–2,0

2,1–2,5

>2,5

nслучаев

20

17

5

1

3

1

n, %

42

36

12

2

6

2


Эти осадки выпадали над различными участками опытной площадки и не сопровождались осадками на контрольной площадке, чем подтверждался факт успешности воздействий. Как видно, дополнительные осадки малы, но они приходятся на большие площади. Если их сосредоточить в одном районе, то за холодный период сумма составит 7–10 мм, что соответствует 7–10 % от нормы осадков холодного периода.


Случайные файлы

Файл
doclad_role.doc
240-2549.DOC
90102.rtf
71381-1.rtf
42560.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.