Магнітне поле у вакуумі (150488)

Посмотреть архив целиком












РЕФЕРАТ

на тему:”МАГНІТНЕ ПОЛЕ У ВАКУУМІ


План


1. Магнітне поле. Магнітна індукція. Закон Ампера.

2. Закон Біо-Савара-Лапласа та його використання в найпростіших випадках:

а) Магнітне поле прямолінійного провідника із струмом;

б) Магнітне поле кругового провідника із струмом;

в) Магнітне поле соленоїда.

      1. Магнітний момент контуру із струмом.


1. Магнітне поле. Магнітна індукція. Закон Ампера


Дослідним шляхом установлено, що подібно до електричних зарядів, навколо яких виникає електричне поле, в просторі навколо провідників із струмом або постійних магнітів виникає магнітне поле. Магнітне поле – це одна із форм існування матерії, завдяки якій здійснюється взаємодія струмів і постійних магнітів.

Встановлено також, що:

- магнітне поле діє лише на рухомі електричні заряди;

- рухомі електричні заряди створюють у просторі магнітне поле;

- магнітне поле не діє на статичні заряди.

Характер дії магнітного поля на струм залежить:

- від форми провідника, по якому тече струм;

- від розміщення провідника в просторі.

У якості пробного тіла для дослідження магнітного поля використовують замкнутий пробний контур з струмом, лінійні розміри якого досить малі. Магнітне поле такого пробного контуру не повинно створювати зовнішнього магнітного поля. При розміщенні такої рамки у досліджуване зовнішнє магнітне поле, із сторони останнього, на рамку діятиме обертальний момент сил М. Елементарна рамка із струмом займе певний напрям у просторі так, щоб магнітне поле рамки і досліджуваного магнітного поля збігалися (рис 11.1).


Рис11.1


Орієнтація контуру в просторі характеризується напрямком нормалі до контуру.

Додатний напрям нормалі визначається правилом правого гвинта. За позитивний напрям нормалі приймається напрям поступального руху правого гвинта, обертання якого збігаються з напрямком струму в пробній рамці.

За напрям магнітного поля у даній точці простору приймається напрям, вздовж якого направляється позитивно орієнтована нормаль до контуру.

Момент сил, який створюється зовнішнім магнітним полем у рамці із струмом, визначається векторним добутком вектора магнітного моменту рамки із струмом і магнітної індукції зовнішнього магнітного поля


, (11.1.1)


де - магнітний момент пробної рамки із струмом I і площею S; - вектор магнітної індукції – силова характеристика зовнішнього магнітного поля.

Скалярна величина вектора моменту сили визначається формулою


. (11.1.2)


Якщо в дану точку зовнішнього магнітного поля розміщувати елементарні рамки із різними магнітними моментами , то на них з сторони магнітного поля будуть діяти різні обертальні механічні моменти сил . Однак відношення для кожного випадку буде сталою величиною, яка є силовою характеристикою цього поля. Позначають цю величину буквою і називають індукцією магнітного поля.


. (11.1.3)


Індукція магнітного поля вимірюється у теслах (Тл), розмірність якого визначається з (11.1.3)


.


Подібно до електричного поля магнітне поле зображають з допомогою силових ліній магнітного поля, напрям яких у кожній точці поля збігається із напрямком вектора .

Лінії індукції магнітного поля завжди замкнуті й охоплюють провідники із струмом. Замкнутість силових ліній магнітного поля характеризує вихровий характер цього поля.

Природа магнітного поля зводиться або до руху електричних зарядів, або до змінного в часі електричного поля. Про це свідчать рівняння Максвела:


а) , (11.1.4)


де - циркуляція вектора електростатичного поля вздовж довільного замкнутого контуру; - потік змінного в часі вихрового магнітного поля крізь довільну замкнуту поверхню;

б) , (11.1.5)


де - струм провідності, який створюється в провіднику вільними електричними зарядами; - потік змінного в часі електричного поля, що інколи називають струмом зміщення. Струм зміщення не пов’язаний з рухом будь-яких електричних зарядів.

Рівняння Максвелла (11.1.4) і (11.1.5) характеризують взаємозв’язок електричних і магнітних явищ. З рівняння (11.1.4) чітко видно, що змінне в часі магнітне поле є причиною виникнення вихрового електричного поля. Останнє, створює електричний струм у замкнутому провіднику.

З рівняння (11.1.5) випливає, що причиною виникнення магнітного поля може бути або струм провідності, або змінне в часі електричне поле, яке не обов’язково призводить до руху зарядів у провіднику.

Оскільки будь-який струм є причиною виникнення магнітного поля, то це пояснює дослідний факт силової дії магнітного поля на провідник із струмом.

Величину цієї сили знайшов Ампер, тому вона називається силою Ампера


, (11.1.6)


де - вектор елементу струму, що збігається з напрямком струму у провіднику; - індукція зовнішнього магнітного поля.


Рис.11.2


На рис.11.2 струм створюється позитивними зарядами, напрям руху яких збігається з напрямком струму.


Напрям сили Ампера визначається правилом лівої руки. Якщо силові лінії магнітного поля входять в долоню лівої руки, а чотири пальці направлені по напрямку струму у провіднику, то великий палець, відхилений на 900, покаже напрямок сили Ампера.


2. Закон Біо-Савара-Лапласа та його використання у найпростіших випадках


Ще на початку 19-го сторіччя французькі фізики Біо і Савар, обробляючи величезний експериментальний матеріал вивчення характеристик магнітного поля провідників зі струмом за участю математика Лапласа, одержали формулу, яка дістала назву у фізиці закону Біо-Савара-Лапласа.

У векторній формі цей закон має вигляд


, (11.2.1)


де  - відносна магнітна проникність середовища, безрозмірна величина; о – магнітна постійна (); I – струм у провіднику; - елемент провідника; - відстань від елемента струму до точки, в якій знаходиться індукція магнітного поля (рис.11.3).


Рис.11.3


З видно, що вектор індукції магнітного поля є дотичною до силової лінії магнітного поля, яка охоплює провідник, і проходить через точку, в якій визначається індукція магнітного поля.

Напрям силової лінії визначається за допомогою правила правого гвинта, як це показано на рисунку.

Поряд із індукцією магнітного поля магнітне поле характеризується напруженістю . Ця величина не залежить від властивостей середовища і дорівнює


. (11.2.2)

Величина напруженості магнітного поля входить в одне із рівнянь Максвелла. Розмірність напруженості буде встановлена трохи пізніше.

Закон Біо – Савара - Лапласа для напруженості магнітного поля Н має вигляд


, (11.2.3)


або в скалярній формі


. (11.2.4)


Магнітному полю властивий принцип суперпозиції. Це означає, що поля від кількох джерел магнітного поля накладаються як вектори, тобто


. (11.2.5)


Знайдемо індукцію магнітного поля біля безмежного прямого провідника із струмом (рис.11.4).

Скористаємось законом Біо – Савара - Лапласа в скалярній формі


, (11.2.6)


де кут  - це кут між напрямком елемента провідника із струмом і радіусом-вектором , як це показано на рис.11.4; - дотичний вектор до силової лінії, напрям якого збігаються з напрямком обертання правого гвинта.


Рис.11.4


З рисунка видно, що

dS=dlsin і dS=rd,

звідки


.


Радіус-вектор також можна виразити через ro і кут , тобто


.


З урахуванням цих зауважень закон Біо – Савара - Лапласа набуде вигляду

. (11.2.7)


Інтегруємо вираз (11.2.7) в межах зміни кута  від 1 до 2, в результаті чого одержимо


. (11.2.8)


Якщо у виразі (11.2.8) 1 прямує до 0, а 2 прямує до , то одержимо безмежний прямий провідник із струмом.

У цьому випадку:

а) індукція магнітного поля буде дорівнювати


. (11.2.9)


б) напруженість магнітного поля буде дорівнювати


. (11.2.10)


З останньої формули легко встановити розмірність напруженості магнітного поля


.


Знайдемо магнітне поле на осі кругового витка із струмом (рис.11.5).


Рис.11.5


Елемент провідника із струмом dl, створює на осі x індукцію магнітного поля dB. Вектор є дотичним до силової лінії, зображеної на рисунку пунктирною лінією. Складова вектора індукції магнітного поля dBy буде скомпенсована аналогічним елементом з протилежної сторони. Результуючу індукцію магнітного поля від кругового витка із струмом слід шукати в напрямку осі x (принцип суперпозиції магнітних полів).

З рисунка видно, що


. (11.2.11)


Закон Біо – Савара - Лапласа запишеться


, (11.2.12)


тут враховано, що .

Підставимо вираз (11.2.12) у (11.2.11), одержимо


. (11.2.13)


Але врахувавши, що


; і ,


одержимо


. (11.2.14)


Інтегруємо цей вираз в межах довжини витка від 0 до 2πR, одержимо


.


Таким чином, магнітна індукція на осі кругового витка дорівнює визначається за допомогою формули


Случайные файлы

Файл
50079.rtf
19655-1.rtf
138163.rtf
10770.rtf
42807.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.