Теория принятия решений (104529)

Посмотреть архив целиком

Министерство образования и науки Украины

Запорожская государственная инженерная академия









Теория принятия решений

Учебно-методическое пособие







Ю.О. Матузко









Запорожье 2009



Содержание


Ведение

Раздел 1. Основные понятия и структура исследования операций

Раздел 2. Принятие решения в условиях риска

2.1 Постановка задачи

2.2 Критерий Байеса

2.3 Критерий Лапласа (Бернулли)

2.4 Критерий Гермейера

2.5 Критерий Ходжа-Лемана

Раздел 3. Принятие решения в условиях неопределенности

3.1 Принцип максимина

3.2 Критерий азартного игрока

3.3 Критерий произведений

3.4 Критерий Сэвиджа

3.5 Критерий Гурвица

Раздел 4. Принятие решения в условиях противодействия

4.1 Матричные игры

4.2 Матричные игры, разрешимые в чистых стратегиях

4.3 Матричные игры, разрешимые в смешанных стратегиях

4.3.1 Постановка задачи

4.3.2 Решение задачи симплекс-методом

4.3.3 Решение задачи графическим методом

Раздел 5. Принятие решения в условиях нескольких критериев выбора40

5.1 Постановка задачи, основные понятия

5.2 Линейные свёртки

5.3 Максиминная и лексикографическая свёртки

5.4 Мультипликативные свёртки

5.5 Многокритериальный выбор на языке бинарных отношений

Раздел 6. Принятие корпоративных решений

6.1 Групповая оценка объектов

6.2 Определение коэффициентов компетентности экспертов

Раздел 7. Критерии модульного оценивания знаний

Раздел 8. Задания для самостоятельной работы студентов

8.1 Домашняя контрольная работа

8.2 Вопросы к модульным тестированиям

8.3 Контрольные вопросы к экзамену по дисциплине

Учебно-методический материал по дисциплин





Ведение


Дисциплина "Теория принятия решений" читается студентам специальности "Автоматизированное управление технологическими процессами". Такой специалист по окончании учебы должен уметь выдать заказчику законченный программно-алгоритмический продукт, который будет автоматизировать процесс принятия решений в конкретном технологическом процессе, описанном заказчиком. Заказчик в таких случаях может представлять различные отрасли народного хозяйства: он может быть химиком, металлургом, строителем, экономистом, электронщиком и т.п. Главное, чтобы его технологический процесс, в котором нужно принимать решения, был успешно автоматизирован. Предлагаемый курс дает теоретические и практические основы математически обоснованного процесса принятия решений. Рассматриваемые в данном пособии задачи носят чисто абстрактный характер по своему текстовому условию. Главное в них – это количественные и качественные методы решения поставленной проблемы принятия решений, которые могут быть применены к различным отраслям.

В пособии охвачена лишь общая часть дисциплины "Принятие решений". Дело в том, что предмет "Теория принятия решений" читается студентам на протяжении всего двух календарных месяцев. Автор по возможности попытался за столь короткий срок охватить наиболее общие и значимые понятия и методы довольно широкой дисциплины "Принятие решений". Более детальную информацию по дисциплине можно получить из специальной литературы, указанной в пособии.

Данное учебное пособие содержит критерии модульного оценивания знаний, задания домашней контрольной работы, вопросы к модульным тестированиям, а также контрольные вопросы к экзамену по предмету "Теория принятия решений".

  1. . Основные понятия и структура исследования операций


Принимать решения, как отдельному человеку, так и различным группам людей, вплоть до всего человечества приходится практически во всех областях своей деятельности. Единственное, чего мы не выбираем, следуя народной мудрости, так это родителей и Родины. Причем в некоторых областях (военных, медицинских, космических, в атомной энергетике, химической промышленности и др.) возникает потребность принятия достаточно сложных управленческих решений, ошибка в которых может повлечь за собой катастрофические последствия. В силу этого появилась необходимость выделить процесс принятия оптимальных решений в отдельную область науки, которая бы формализовала и систематизировала данный процесс.

Исторически считается, что это произошло в начале 40-х годов ХХ века, когда группа английских ученых математически сформулировала и нашла решение задачи об оптимальном способе доставки на фронт войск, оружия и снаряжения. И сразу же стали интенсивно поступать заказы на решение новых военных задач. Позднее эти исследования были перенесены и на гражданскую сферу и обобщены в отдельную науку – исследование операций.

Исследование операций стала основным научным инструментом при принятии оптимальных решений в самых разнообразных областях человеческой деятельности. Специалиста в этой науке в литературе обычно называют аналитиком (или системным аналитиком, или лицом, принимающим решение (далее ЛПР)).

Дадим некоторые основные определения и обозначим ориентировочное структурное строение исследования операций. Даная структура также отражает этапы, которые должен последовательно пройти ЛПР при принятии решения.

1 этап. Постановка (формулировка) задачи (проблемы).

На этом этапе аналитик должен трансформировать слова заказчика "хочу, чтобы было так" в четко сформулированную задачу. В 99% случаях заказчик не только не может предоставить, но и понятия не имеет о тех данных, которые необходимы аналитику для успешного разрешения проблемы. Оно и понятно – ведь у него нет соответствующего образования. (На самом деле, такое образование заказчику и не нужно, ведь он обратился к грамотному специалисту-аналитику, выпускнику ЗГИА! ) Все необходимое аналитик должен добыть себе сам. Так будет лучше по всем показателям – и по времени и, что немаловажно, по искажению информации (формулировка задачи с чьих-то слов уже априори чревато ошибками). Аналитику необходимо увидеть и изучить проблему "изнутри", для этого ему нужно "внедриться" в сложившуюся ситуацию. Зачастую аналитику надо "внедриться" и поработать на всех ключевых постах в организации заказчика, столкнувшейся с проблемой. На это может уйти от нескольких дней до месяцев.

2 этап. Построение математической модели задачи.

Здесь четко поставленная и сформулированная жизненная проблема формализуется математически.

  1. Определяются переменные – переменные величины (их может быть как несколько, так и одна), изменение которых влияет на конечный результат задачи. Наборы различных конкретных значений переменных называются альтернативами (также во многих литературных источниках набор переменных называется планом).

  2. Определяются ограничения, которые накладываются на переменные. Пересечение всех полученных ограничений задает допустимое множество. Набор переменных, которые удовлетворяют всем ограничениям, называется допустимым планом.

  3. Определяется критерий, по которому должны отбираться альтернативные решения (планы). Такой критерий называется целевой функцией.

Задача состоит в том, чтобы найти такой набор переменных (выбрать такую альтернативу), чтобы они принадлежали допустимому множеству (т.е. удовлетворяли всем ограничениям задачи) и чтобы целевая функция от этих переменных принимала свое оптимальное значение. Такой набор переменных называется оптимальным планом. Понятно, что оптимальный план должен быть допустимым, поэтому и ищется оптимальный план только среди допустимых планов.

Описанными первыми двумя этапами занимается дисциплина "математическое моделирование", являющаяся составной частью исследования операций.

3 этап. Решение математической модели задачи.

Решением математических моделей задач занимается дисциплина "математическое программирование".

В исследовании операций нет единого общего метода решений всех математических моделей. Многолетние исследования позволили обобщить и сгруппировать схожие типы моделей в определенные классы задач. Методы решения данных классов задач составляют отдельные разделы математического программирования, со временем они даже трансформировались в отдельные дисциплины. Дадим краткий обзор некоторых из них.

1) Линейное программирование. В этом классе задач и целевая функция и все ограничения являются линейными функциями. К таким задачам относятся:

задача о плане производства;

задача о диете;

и др.

2) Целочисленное программирование. В этих задачах целевая функция и все ограничения также являются линейными. Все переменные должны принимать только целочисленные значения. К таким задачам относятся:

транспортная задача;

задача о назначениях;

и др.

3) Динамическое программирование. Применяется, когда исходную задачу можно разбить на меньшие подзадачи и решать их пошагово. К таким задачам относятся:

задача коммивояжера;

задача об управлении запасами;

задача о ранце;

и др.

4) Нелинейное программирование. В этом классе задач либо целевая функция, либо все или некоторые ограничения являются нелинейными функциями.

Еще раз акцентируем внимание, что выше приведены лишь некоторые основные разделы математического программирования. Кроме указанных разделов еще существуют теория графов, теория расписаний, сетевое планирование, системы массового обслуживания, теория марковских процессов и др. Каждый раздел математического программирования – это отдельная сформировавшаяся дисциплина, требующая достаточно углубленного теоретического и, особенно, практического изучения.


Случайные файлы

Файл
128843.rtf
113284.rtf
59976.rtf
14024-1.rtf
28643-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.