Ряды Фурье. Интеграл Фурье. Операционное исчисление (85838)

Посмотреть архив целиком

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В.Плеханова

(технический университет)







А.П. Господариков, Г.А. Колтон, С.А. Хачатрян


  1. Ряды Фурье. Интеграл Фурье. Операционное исчисление


  1. Учебно-методическое пособие












САНКТ-ПЕТЕРБУРГ

2005


УДК 512 + 517.2 (075.80)

ББК 22.161.5

Г723


Учебно-методическое пособие дает возможность получить практические навыки анализа функций с помощью разложения в ряд Фурье или представления интегралом Фурье и предназначено для самостоятельной работы студентов дневной и заочной форм обучения специальностей.

В пособии рассмотрены основные вопросы операционного исчисления и широкий класс технических задач с применением основ операционного исчисления.


Научный редактор проф. А.П. Господариков


Рецензенты: кафедра высшей математики № 1 Санкт-Петербургского государственного электротехнического университета; доктор физ.-мат. наук В.М. Чистяков (Санкт-Петербургский государственный политехнический университет).


Господариков А.П.

Г723. Ряды Фурье. Интеграл Фурье. Операционное исчисление: Учебно-методическое пособие / А.П. Господариков, Г.А. Колтон, С.А. Хачатрян; Санкт-Петербургский государственный горный институт (технический университет). СПб, 2005. 102 с.


ISBN 5-94211-104-9

УДК 512 + 517.2 (075.80)

ББК 22.161.5


Введение


Из теории Фурье известно, что при некотором воздействии на физические, технические и другие системы, его результат повторяет форму начального входного сигнала, отличаясь только масштабным коэффициентом. Понятно, что на такие сигналы (их называют собственными) система реагирует наиболее простым образом. Если произвольный входной сигнал есть линейная комбинация собственных сигналов, а система линейна, то реакция системы на этот произвольный сигнал есть сумма реакций на собственные сигналы. И поэтому полную информацию о системе можно получить по «кирпичикам» – откликам системы на собственные входные сигналы. Так поступают, например, в электротехнике, когда вводят частотную характеристику системы (передаточную функцию). Для наиболее простых линейных, инвариантных во времени систем (например, описываемых обыкновенными дифференциальными уравнениями с постоянными коэффициентами) в некоторых случаях собственными функциями являются гармоники вида . Таким образом можно получить и результат произвольного воздействия на систему, если последний будет представлен в виде линейной комбинации гармоник (в общем случае, в виде ряда Фурье или интеграла Фурье). Вот одна из причин, по которой в теории и приложениях возникает потребность применения понятия тригонометрического ряда (ряда Фурье) или интеграла Фурье.


Глава 1. Ряды Фурье


§ 1. Векторные пространства


Здесь приведены краткие сведения из векторной алгебры, необходимые для лучшего понимания основных положений теории рядов Фурье.

Рассмотрим множество  геометрических векторов (векторное пространство), для которого обычным образом введены понятие равенства векторов, линейные операции (сложение и вычитание векторов, умножение вектора на число) и операции скалярного умножения векторов.

Введем в пространстве  ортогональный базис, состоящий из трех попарно ортогональных векторов , и . Произвольный вектор является линейной комбинацией векторов базиса:


. (1.1)


Коэффициенты i (i = 1, 2, 3), называемые координатами вектора относительно базиса , могут быть определены следующим образом. Скалярное произведение вектора и одного из векторов базиса


.


В силу ортогональности базиса скалярные произведения при , следовательно, в правой части последнего равенства отлично от нуля лишь одно слагаемое, соответствующее , поэтому , откуда


, (1.2)


где .

Если векторы и заданы своими координатами и , то их скалярное произведение


.


Так как при скалярное произведение , то в двойной сумме отличны от нуля лишь слагаемые с равными индексами, поэтому


. (1.3)


В частности при из (1.3) следует

. (1.4)


§ 2. Скалярное произведение и норма функций


Обозначим символом множество функций, кусочно-непрерывных на промежутке [a, b], т.е. функций, имеющих на промежутке [a, b] конечное число точек разрыва первого рода и непрерывных во всех остальных точках этого промежутка.

Скалярным произведением функций называется число


.



Свойства скалярного произведения функций полностью совпадают со свойствами скалярного произведения векторов:


1. .

2. .

3. .

4. ; .


Таким образом, скалярное произведение линейно зависит от своих компонентов. Это свойство называется билинейностью скалярного произведения.

Функции называются ортогональными на [a, b], если .

Нормой функции на промежутке [a, b] называется неотрицательное число , квадрат которого равен скалярному произведению функции на себя:


.


Свойства нормы функции во многом совпадают со свойствами модуля вектора:

1. .

2. Если функция непрерывна на [a, b] и , то . Так как , то при


,


откуда . Дифференцируя последнее соотно- шение по и применяя теорему Барроу, получим и, сле-довательно, .

3. теорема косинусов


. .


Следствие. Если , то (теорема Пифагора).


4. Обобщенная теорема Пифагора. Если функции (k = = 1, 2, …, n) попарно ортогональны на промежутке , то


.


Используя свойство билинейности скалярного произведения, получим


.


В силу ортогональности функций скалярные произведения при , поэтому


.


5. неравенство Коши – Буняковского , или, что то же самое,


.


При любых вещественных


.


Таким образом, квадратный трехчлен в левой части последнего неравенства сохраняет знак на всей вещественной оси, следовательно, его дискриминант .

Упражнение 1. Доказать свойства скалярного произведения функций 1-3.

Упражнение 2. Показать справедливость следующих утверждений:

а) функция ортогональна функциям и на промежутке при любых целых k и m;

б) при любых целых k и m функции и ортогональны на промежутке ;

в) функции и , а также и при ортогональны на промежутках и ;

г) функции и не ортогональны на промежутке .

Упражнение 3. Используя свойство нормы 5, доказать неравенство треугольника

.


§ 3. Ортогональные системы функций. Коэффициенты Фурье. Ряд Фурье


Счетное множество непрерывных на промежутке функций образуют на этом промежутке ортогональную систему, если


1. , 2. при .


Пусть – ортогональная система функций на промежутке и . По аналогии с (1.2) образуем величины


, (3.1)


где .

Числа называются коэффициентами Фурье функции относительно ортогональной системы .

Ряд


(3.2)


называется рядом Фурье для функции .

В отличие от того, что имеет место в векторной алгебре см. (1.1), здесь нельзя утверждать ни того, что суммой ряда Фурье (3.2) является заданная функция , ни даже того, что ряд (3.2) вообще сходится. Тем не менее, частичные суммы ряда (3.2), называемые полиномами Фурье, играют важную роль в задаче аппроксимации функции линейными комбинациями функций .

Термином аппроксимация будем обозначать замену заданной функции другой, близкой к , функцией , более простой или более удобной для исследования. При этом, естественно, возникает вопрос о величине погрешности, связанной с такой заменой. Погрешность аппроксимации обычно оценивается с помощью среднего квадратического отклонения


,


или более простой величины


.


Ясно, что чем меньше величина δ, тем ближе располагаются друг к другу графики функций и , тем лучше функция аппроксимирует функцию .

Определим, при каком наборе коэффициентов линейная комбинация



первых п функций ортогональной системы наилучшим образом аппроксимирует функцию , или, иначе говоря, при каких величина принимает наименьшее значение.

Преобразуем выражение для п, используя последовательно теорему косинусов, свойство билинейности скалярного произведения, обобщенную теорему Пифагора и формулу (3.1) для коэффициентов Фурье:


.


Применив тождество , получим


Из последнего выражения сразу следует, что принимает наименьшее значение


, (3.3)


при

Таким образом, именно частичная сумма ряда Фурье является наилучшей аппроксимацией функции по сравнению с другими линейными комбинациями функций

Упражнение. Показать, что, во-первых, система функций ортогональна на промежутке , и, во-вторых, системы функций и ортогональны на промежутке .

Указание. Воспользоваться свойствами скалярного произведения функций.


§ 4. Сходимость в среднем. Равенства Парсеваля


Случайные файлы

Файл
29776.rtf
142038.rtf
20288-1.rtf
80883.rtf
142165.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.