Алгоритм решения Диофантовых уравнений (85504)

Посмотреть архив целиком













Алгоритм решения Диофантовых уравнений














Нижнегородская область

Г.Заволжье

2009 г.


В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом:

- великая теорема Ферма;

- уравнение Пелля;

- уравнения эллиптических кривых У2=X3+K,

23, У23-Х+1, У23+аХ+В);

- иррациональные корни уравнения Х22=1;

- поиск Пифагоровых троек;

- уравнение Каталана;

- уравнение гипотезы Билля



Решение Диофантовых уравнений


Лирическое отступление (ЛО) – 1


Всё началось с теоремы Ферма.

В клубе фермистов оказался случайно, решал совершенно другую задачу, и неожиданно пришла идея ВТФ. Я даже не помнил её классическое написание – хn+уn=сn , формулу ВТФ написал в виде хn = уn + сn, а потом не стал переучиваться, т.к. привык к своему написанию формулы.

ЛО – 2. При доказательстве ссылаюсь на закон распределения простых чисел. Можно было бы обойтись без упоминания оного. Просто сохранил историческую правду, т.к. лично для меня этот закон стал подсказкой.

ЛО – 3. Этот же подход был применён для решения уравнения гипотезы Биля и решения других уравнений. Выводы получились интересными.

Для себя обкатал этот метод на нескольких шуточных уравнениях. При профессиональном подходе, похоже, этот метод может дать как качественные выводы, так и количественные, окончательный же приговор этому методу будет сделан совместными усилиями.



Великая теорема Ферма. Решение


не имеет решений в целых числах при показателе степени n>2.


Для доказательства данного утверждения было рассмотрено аналогичное функциональное уравнение. Чтобы получить функциональное уравнение надо обратиться к закону распределения простых чисел в ряду натуральных чисел. В таблице изображена матрица распределения составных чисел в ряду натуральных чисел.


4

+2

6

+2

8

+2

10

+2

12

+2

14

+2

16

+2

18


+2



+3



+4



+5



+6



+7



+8



+9


6

+3

9

+3

12

+3

15

+3

18

+3

21

+3

24

+3

27

+6

+2


+6















8

+4


12


16



20


24


28


32


36

+2
















10

+5

15


20



25


30


35


40


45

+6

+2


+7
















12

+6

18


24


30


36


42


48


54


+2
















14

+7

21


28


35


42


49


56


63


+2
















16

+8

24


32


40


48


56


64


72


+2
















18

+9

27


36


45


54


63


72


81











Формула любого составного числа, соответствующего этой матрице, имеет вид - (i + 1) ( j + 1), где i - номер столбца этой матрицы,

j – соответственно, номер строки этой матрицы. Для верхней строки ( = 1) формула составного числа примет вид – 2(i + 1) – это ряд чётных чисел.

Всё это пока заготовка для доказательства великой теоремы Ферма (ВТФ).

Нечётные числа примут вид 2(i + 1) ± 1. В нашем случае пусть нечётные числа будут - 2(i + 1) - 1.

Чтобы доказать ВТФ надо рассмотреть три варианта:

- I X - чётное число, У - чётное число, Z - чётное число;

  • II X - чётное число, У - нечётное число, Z - нечётное число;

  • III X - нечётное число, У - чётное число, Z - нечётное число.


Вариант I. Пусть уравнение ВТФ верно для чётных чисел.

В формулу ВТФ вставим аналитические выражения чётных чисел.


[2(1 + 1)]n = [2(2 + 1)]n + [2(3 + 1)]n ,


где для определённости возьмём 1 > 2 > 3

После упрощения.


(1 + 1)n = (2 + 1)n + (3 + 1)n

По сути, природа этого уравнения та же, что и уравнения ВТФ, т.к. зависимость между Х, У, Z и столбцами матрицы i – функции соответствующие линейным уравнениям.


Случайные файлы

Файл
32930.rtf
90386.rtf
32985.rtf
117226.rtf
235961.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.