Физические основы распространения излучения по оптическому волокну (63334)

Посмотреть архив целиком













Физические основы распространения излучения по оптическому волокну



План


1. Волоконный световод

2. Физические и технические особенности

3. Общие сведения об оптоволокне

4. Физика светопередачи

5. Затухание



Волоконно-оптические линии связи (ВОЛС) – это система передачи данных, при которой информация передается по оптически прозрачным диэлектрическим волноводам, называемым “оптическое волокно”.

Волоконно-оптическая сеть - это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи.


1. Волоконный световод


Основным элементом оптического кабеля является волоконный световод. Это тонкое стеклянное волокно цилиндрической формы, по которому происходит передача электромагнитного излучения микронного диапазона волн, соответствующего частотам 1014-1015 Гц. Принцип действия волоконного световода основан на использовании процессов отражения и преломления оптической волны на границе раздела двух сред с различными оптическими свойствами, зависящими от показателя преломления n.

При падении луча на границу раздела двух сред в общем случае появляются преломленная и отраженная волны. Согласно закону Снеллиуса угол падения φп связан с углами отражения отр и преломления пр соотношением:


φn=φотр,

n1sinφn=n2sinφпр (1)


причем если n1>n2, то из (1) следует, что пр > n (см. рис.1)

По мере увеличения угла падения со стороны оптически более плотной среды можно достичь состояния, когда приломленный луч будет скользить по границе раздела сред без перехода в оптически менее плотную среду (луч 2 рис.2).






Рис. 1. Падение световой волны на границу раздела двух сред при n1>n2


Угол падения, при котором наблюдается такой эффект, называется предельным углом полного внутреннего отражения. Для всех углов падения, которые превышают предельный, будет иметь место только отражение. Это явление называется полным внутренним отражением, оно положено в основу передачи оптического излучения по световоду.




Рис. 2. Прохождение лучей в волоконном световоде


Обычно волоконные световоды имеют круглое поперечное сечение и состоят из двух концентрических слоев оптически прозрачного диэлектрика. В центре располагается сердцевина из оптически более плотного кварца, его окружает оболочка из кварца с меньшей оптической плотностью. Волокна отличаются диаметром сердцевины и оболочки, а также профилем показателя преломления сердцевины. Профиль показателя преломления – это закон, который показывает, как может меняться или оставаться постоянным показатель преломления оболочки вдоль радиуса. При обозначении волокна указываются через дробь значения диаметров сердцевины и оболочки.


2. Физические и технические особенности


Физические особенности:

1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=1014 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1012 бит/с или Терабит/с.(т.е. по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов). Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.

2. Очень малое затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов.

Технические особенности:

1.Волокно изготовлено из кварца, основу которого составляет двуокись кремния.

2. Оптические волокна имеют диаметр около 100 мкм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

3. Стеклянные волокна — не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии.

Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения. При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.

5.Важное свойство оптического волокна — долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.


3. Общие сведения об оптоволокне





Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.

В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией. Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне. Потери на поглощение зависят от чистоты материала, потери на рассеяние зависят от неоднородностей показателя преломления материала.





Конструктивно все оптичеcкие волокна содержат в себе некоторое число нижеперечисленных слоев:

1. сердечник, который несет в себе большую часть света

2. отражающая оболочка, преломляющая свет и ограничивающая его в сердечнике

3. покрытие первичного буфера, обеспечивающее первый уровень механической защиты

4. покрытие вторичного буфера, которое защищает относительно хрупкое первичное покрытие и само волокно.

Многомодовое волокно

В случае многомодового волокна диаметр сердечника по сравнению с длиной световой волны относительно большой. Диаметр сердечника от 50 микрон до 1000 в сравнении с длиной волны света 1300 нм. Это означает, что свет может распространяться в волокне в различных направлениях или модах — отсюда и название многомодовое волокно. Простейший и достаточно старый тип — это волокно с шаговым индексом. Коэффициент преломления — возможность материала отражать свет — в нем постоянен по всему сечению сердечника. Это приводит к тому что лучи света распространяются в нем так как показано на рисунке:

Многомодовое волокно со ступенчатым коэффициентом




1 — входной импульс

2 — дисперсия

3 — выходной импульс

4 — коэффициент преломления

5 — мода высокого порядка

6 — мода низкого порядка


В многомодовом волокне лучи света, соответствующие различным модам, проходят различные дистанции. Если в такое волокно ввести короткий импульс света, то его лучи прибудут на противоположный конец через различные промежутки времени, и выходной импульс будет шире, чем входной. Это явление называют модовая дисперсия. Она ограничивает число импульсов в секунду, которые могут быть переданы через волокно и все еще распознающихся на противоположном конце, как отдельные импульсы. По этой причине пропускная способность волокна с шаговым индексом невелика и составляет 20 -30 МГц для кабеля длиной 1 км.




Многомодовое волокно с градиентным коэффициентом

1 — входной импульс

2 — дисперсия

3 - выходной импульс

4 — коэффициент преломления


Для многомодового волокна с последовательным индексом коэффициент преломления плавно (последовательно) изменяется от максимума в самом центре до минимума по краям. Такая конструкция использует тот факт, что свет распространяется быстрее в материалах с низким коэффициентом преломления чем в материалах с высоким. Поэтому световой импульс, распространяясь в таком волокне, имеет гораздо меньшую модовую дисперсию, а кабель за счет этого гораздо большую пропускную способность от 100МГц до 1300МГц для кабеля длиной один километр. Наиболее популярный тип многомодового волокна, используемого в локальных компьютерных сетях обычно обозначается как MM 62.5/125.


Случайные файлы

Файл
122711.rtf
23239.rtf
11249-1.rtf
34717.rtf
13.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.