Структура транскриптонов и транскрипция про- и эукариот (10687)

Посмотреть архив целиком

ЛЕКЦИЯ

СТРУКТУРА ТРАНСКРИПТОНОВ И ТРАНСКРИПЦИЯ ПРО – И ЭУКАРИОТ


Транскрипция – процесс переноса генетической информации от ДНК к РНК. Все виды РНК – мРНК, рРНК и тРНК – синтезируются в соответствии с последовательностью оснований в ДНК, служащей матрицей. Сразу же следует указать на то, что матрицей для синтеза РНК служит та нить ДНК, которую иногда называют «защитной» - несмысловая цепь (3΄→5΄). Мы сохраним название «кодирующей» или «смысловая» (5΄→3΄) для той нити ДНК, которая не служит матрицей для синтеза РНК. Ведь именно ее последовательность нуклеотидов будет в точности воспроизводить РНК, синтезированная по матрице другой, комплементарной, нити ДНК. (прозрачка 1)

В некоторых случаях (бактериофаг фХ174) все мРНК транскрибируются с одной и той же цепи. Очень редко транскрипция идет на обеих цепях в одном и том же месте, так что образующиеся цепи РНК оказываются комплиментарны друг другу; возможно, подобный способ транскрипции имеет особое регуляторное значение

В основу концепции взаимосвязи генотипа и фенотипа была положена теория «один ген – один фермент». Однако эта теория не учитывала молекулярную природу носителей генетической информации и способ передачи этой информации от генов к белкам. Не содержала она и ни каких предположений о механизме регуляции экспрессии генов

Экспрессия генов – это процесс реализации информации закодированной в структуре ДНК, на уровне РНК и белков.

Прогресс в этих областях наметился сразу после того, как были установлены следующие ключевые положения:

  1. показано, что гены – это участки ДНК;

  2. расшифрована молекулярная структура ДНК;

  3. установлено, что структура и функции белков определяются их уникальной аминокислотной последовательностью;

  4. обнаружено, что передача информации от ДНК к белкам осуществляется с помощью РНК;

  5. разработаны относительно простые бактериальные генетические системы, позволяющие связать мутационные изменения в генах со структурными изменениями в соответствующих белках;

  6. разработаны системы для изучения синтеза РНК и сборки белков in vitro.

Природу информационной связи между ДНК и белками удалось понять, проводя генетические и биохимические исследования мутаций в данном гене и сопоставляя их со специфическими изменениями в аминокислотной последовательности соответствующего белка, благодаря этим исследованиям была выявлена также коллинеарность последовательностей нуклеотидов в ДНК и аминокислот в белках. Наличие такой корреляции подразумевало существование генетического кода, связывающего нуклеотидные и аминокислотные последовательности обоих полимеров (генетический код), какие химические процессы управляют трансляцией генетического кода и как они регулируются при формировании свойственным разным клеткам и организмам фенотипов?

Сейчас природа генетического кода известна, составлен словарь, переводящий нуклеотидную последовательность в аминокислотную. Установлены и особенности различных этапов экспрессии генов и их регуляция, хотя многие молекулярные детали еще ждут своего разъяснения.

Процесс транскрипции у про- и эукариот существенно отличается


Транскрипция у прокариот


Фермент, ведущий матричный синтез РНК называется «РНК-полимераза» (не синтезируют РНК-праймеры для репликации, РНК-праймеры синтезируют специальные РНК-полимеразы – праймазы). Он копирует информацию, «записанную» в гене. Так мы будем называть участок ДНК, направляющий комплементарный синтез молекул РНК. Одни из этих молекул кодируют далее синтез белков, а также элементов, участвующих в регулировании этого синтеза. Такие РНК условимся называть «информационными» (иРНК). Другие гены направляют (непосредственно) синтез стабильных молекул клеточных РНК. Впрочем, иногда гены нескольких функционально связанных белков располагаются на ДНК рядом, в виде «кластера» генов и «прочитываются» РНК-полимеразой за один проход. Такую группу генов именуют «опероном». Соответствующая ему иРНК направляет рибосомальный синтез всех этих белков.

В клетке E.coli одна и та же РНК-полимераза (ДНК-зависимая РНК-полимераза) ведет синтез всех типов РНК (информационных — иРНК, рибосомальных — рРНК и транспортных — тРНК). Для холофермента РНК-полимеразы известны: молекулярный вес М ~ 487 тыс. дальтон и 5 субъединиц: две α, одна β, одна β΄, одна δ и одна ω (α2ββ΄δω). Альтернативная, форма фермента, называемая кор-ферментом или кором, лишена δ-субъединицы (т.е. кор-фермент + δ-субъединица = холофермент). β-субъединица участвует в связывании рибонуклеозидтрифосфатов в реакциях инициации и элонгации. Комплекс α- и β΄-субъединиц (α2β΄) участвует в неспецифическом прочном связывании с ДНК и в специфичном взаимодействии фермента с промоторами – сайтами, детерминирующими инициацию транскрипции. δ-субъединица (прозрачка 5) обеспечивает эффективное связывание холофермента с промотором, а при ее отсоединении оставшийся кор-фермент переключается на элонгацию. δ-субъединица может снова стимулировать инициацию, специфически связавшись с другой молекулой РНК-полимеразы.

У высших организмов известны три различных фермента: РНК-полимераза I, РНК-полимераза II, РНК-полимераза III.

Место посадки РНК-полимеразы строго фиксировано «промотором» — участком ДНК, как правило, обогащенным стоящими подряд основаниями А и Т. Промоторы различных генов сходны по своему строению, но не тождественны.

РНК-полимераза снимается с ДНК по достижении ею «терминатора» — определенной последовательности нуклеотидов ДНК, нередко образующих небольшие петли — комплементарно спаренные участки одной нити. Терминатор всегда располагается дальше «стоп-кодона» — тройки нуклеотидов, определяющих окончания синтеза белка по матрице иРНК.


Синтез РНК на ДНК-матрице


Двухцепочечная молекула ДНК – это физиологическая матрица для синтеза всех клеточных РНК. Даже если геном, как у некоторых вирусов, представлен одноцепочечной ДНК, последняя перед транскрипцией обязательно переходит в двуцепоччечную репликативную форму. Транскрибирована может быть любая из двух цепей геномной ДНК. Однако матрицей при транскрипции отдельного гена обычно служит только какая-то одна из низ (прозрачка 1).

Нуклеотидными предшественниками для синтеза РНК являются четыре рибонуклеозид 5΄трифосфата: АТФ, ГТФ, УТФ и ЦТФ (прозрачка 2). Многие РНК содержат модифицированные нуклеотиды, но изменения в основаниях и рибозных остатках происходят после полимеризации, т.е. посттракскипционно. Тем не менее РНК-полимеразы могут использовать рибонуклеозид 5΄трифосфаты, отличные от указанных четырех при условии, что модифицированные основания обладают способностью к спариванию, сравнимой с таковой для А, Г, Ц и У.

РНК-полимеразы катализируют реакцию присоединения 3`-ОН-группы нуклеотида, находящегося на растущем конце цепи, к α-фосфату следующего рибонуклеозид 5΄трифосфата (прозрачка 3). Многократное повторение этой реакции приводит к постепенному удлинению цепи РНК. Образование каждой новой фосфодиэфирной связи сопровождается высвобождением неорганического пирофосфата; быстрый гидролиз пирофосфата до неорганического фосфата in vivo делает реакцию образования фосфодиэфирной связи энергетически выгодной.

Транскрипция аналогична репликации в том смысле, что для ее осуществления также нужна ДНК-матрица (прозрачка 3). Порядок присоединения нуклеотидов определяется комплементарным спариванием оснований. Чтобы могло происходить комплементарное спаривание каждого следующего нуклеозидтрифосфата с матричным транскрибируемым основанием, спираль ДНК во время транскрипции должна раскручиваться с помощью РНК-полимеразы (прозрачка 4). Растущая цепь РНК остается связанной с ферментом и спаренной своим растущим концом с участком матричной цепи длиной 20-30 нуклеотидов; остальная часть образовавшейся цепи не связана ни с ферментом, ни с ДНК. По мере продолжения транскрипции временно разошедшиеся цепи ДНК воссоединяются и восстанавливается исходная дуплексная структура.

Отсюда различия транскрипции и репликации:

  • транскрипция – консервативна (двойная спираль ДНК сохраняется, а синтезированная РНК отделяется), а репликация – полуконсервативна (обе цепи исходного дуплекса паспределяются по двум дочерним спиралям);

  • репликация начинается только с затравки, а инициации синтеза РНК с помощью РНК-полимеразы идет de novo, начинаясь с рибонуклеозидтрифосфата, соответствующего первому нуклеотиду в цепи РНК

Наращивание РНК идет в направлении 5` - к 3`-концу вдоль матричной цепи, ориентированной в направлении 3΄→5΄, т.е. антипараллельно (прозрачка 3). Несмотря на процессвный характер элонгации (фермент не отделяется от матрицы на протяжении всего раунда транскрипции), ее скорость вдоль матрицы непостоянна в некоторых местах фермент делает остановки; возможно, это происходит там, гле в одноцепочечнтной ДНК или в самой РНК образуются внутрицепочечные дуплексы, мешающие продвижению полимеразы. Такие паузы могут при определенных обстоятельствах приводить к преждевременной терминации транскрипции. сигналами для нормальной терминации и отделению синтезированной РНК и полимеразы от матрицы являются особые структуры РНК-шпильки.

Каков механизм однонаправленного движения РНК-полимеразы вдоль матричной ДНК остается неясным. Неизвестно пока и как расплетается и заплетается вновь во время транскрипции дуплекс ДНК и почему восстановление этого дуплекса более выгодно, чем образование дуплекса ДНК-РНК. Можно лишь отметить, что поскольку РНК-полимераза одна осущесествляет эти функции in vitro даже в случае ковалентнозамкнутых кольцевых матричных ДНК, все секреты, по-видимому, кроются в самом этом ферменте. Для сравнения вспомним, что ДНК-полимеразы не способны к инициации синтеза новых цепей de novo и что в процессах расплетания и восстановления дуплексов при репликации двуцепочечной ДНК участвуют геликазы и топоизомеразы.


Инициация транскрипции


Случайные файлы

Файл
55822.rtf
pb_12-368-00.doc
92497.rtf
94815.rtf
5203.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.