Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский" (151346)

Посмотреть архив целиком

Министерство общего и профессионального образования

Российской Федерации


Кафедра автоматизации технологических процессов и производств


УТВЕРЖДАЮ:

Зав. кафедрой______________

___________________________




ДИПЛОМНЫЙ ПРОЕКТ

Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника “Таймырский”


Автор дипломного проекта

Обозначение дипломного проекта

Специальность: Электропривод и автоматика промышленных установок и технологических комплексов

Руководитель проекта

Консультанты по разделам:

___________________________________________

___________________________________________

___________________________________________

Нормоконтролер

___________________________________________



СОДЕРЖАНИЕ


Введение …………………………………………………………………….….. 4

1. Горнотехнологическая часть.…………………………………………….…. 6

2. Механическое оборудование.……………………………………………… 18

3. Электроснабжение горного предприятия …...………………………….… 26

4. Автоматизированный электропривод горных машин и установок.….….. 42

5. Автоматическое управление технологическими процессами, машинами и установками………………………………….…………………………………. 49

6. Специальная часть…………………………………...……………………… 52

7. Обслуживание, ремонт и наладка энергетического оборудования и средств автоматизации …..…………………………………………………………….. 88

8. Экономическая часть.………………………..……………………………… 91

9. Охрана труда…………………………………………………………...…….. 94

Заключение…………………………………………….……………………… 105

Библиографический список ………………………………………………… 106


Введение


В административном отношении Талнахское и Октябрьское месторождения, которое разрабатывает рудник “Таймырский”, расположены в Дудинском районе Таймырского национального округа Красноярского края. Они расположены у юго-западного подножия плато Хараеллах в бассеинах рек Талнах и Хараеллах, являющимися правыми притоками реки Норильской. От города Норильска месторождения удалены на 20км к северу и связаны с ним шоссейной и железной дорогами.

Снабжение электроэнергией осуществляется от ТЭЦ-1, ТЭЦ-2 и Хантайской ГЭС.

Водоснабжение рудника “Таймырский” и города Талнах производится за счет Талнахского месторождения подземных вод, вскрытого рядом скважин.

Теплоснабжение осуществляется от ТЭЦ-2. Для технологической переработки добываемых руд Норильский горно-металлургический комбинат имеет: обогатительные фабрики №1 и № 2, никелевый завод, медный завод, Надежденский металлургический завод.

Талнахское месторождение расположено в краевой юго-западной части Хараеллахской мульды на месте ее пересечения с зоной Норильско-Хараеллахского разлома.

Талнахский рудоносный интрузив в поле рудника разделен на северо-западную и северо-восточную ветви субмеридиональным Норильско-Хараеллахским разломом. К северозападной части приурочено Талнахское месторождение, к северовосточной - Октябрьское.

Северо-восточная ветвь в поперечном сечении имеет форму плоско-выпуклой линзы. Это тело полого сечет вмещающие породы, погружаясь на север. На юге оно залегает на контакте пород тунгусской серии с эффузивами, к северу погружается от туфолавовой толщи до карбонатно-глинистых пород.

Рудник “Таймырский” является одним из самых больших.

Его годовая производительность составляет около 2,2 млн.т. Рудник построен сравнительно недавно (15 лет назад) и на нем используется прогрессивная современная техника.

Рудник “Таймырский”, являясь элементарным звеном технологической цепочки производства, поставляет отбитую руду на обогатительную фабрику ОФ-2, которая по пульпопроводу отправляется на дальнейшую переработку.

Задачи дальнейшего повышения эффективности работы предприятия горнодобывающей промышленности не могут быть решены без автоматизации производственных процессов.

Эффективность замены устаревшей аппаратуры автоматизации на более прогрессивную, с расширенными возможностями должна заключаться в оптимизации процесса, увеличении нагрузки на автоматизированное оборудование, экономии энергетических и материальных ресурсов, повышении надежности оборудования.

Целью данного дипломного проекта является анализ показателей качества электрической энергии, их контроль и автоматическое регулирование, и приведение данных показателей к нормируемым значениям.

В настоящее время на НГМК поставленные вопросы остаются без внимания, которые, при дальнейшем развитии рыночных отношений, рано или поздно необходимо решать.

Рациональное использование материальных и трудовых ресурсов, оснащение горнодобывающих предприятий с использованием новой высокопроизводительной техники и способов управления дают возможность резко повысить производительность труда и качество продукции.


1. Горнотехнологическая часть


1.1. Геологическое строение месторождения и горно-геологические условия эксплуатации


Рудник «Таймырский» эксплуатируется на базе запасов богатых руд центральной части Октябрьского месторождения сульфидных руд медно – никелевых руд, приуроченных к Северо-западной (Хараелахской) ветви Талнахского рудоносного интрузива. Поле рудника включает в себя две рудные залежи:

а) 1 Хараелахская до глубины 1500м.

б) 2 Северная.

Рудоносная интрузия локализуется в глинисто сульфатно-карбонатной толще девонских отложений и погружается в северо–восточном направлении под углом 12 – 18 градусов.

Перекрывающая толща предоставлена сульфатно-карбонатными породами девона, песчано-глинистыми отложениями тунгусской серии, базальтами пермотриаса и четвертичными образованиями.


1.2. Стратиграфия и магматизм месторождения


Геологический разрез района представлен кембрийско-ордовикскими карбонатными осадками, чередованием морских (известняки, доломиты) и лагунных (ангидриты, глины) отложений силура-девона, терригенными углекислыми образованиями перми-триаса, туфолавовой толщей триаса. Рыхлые четвертичные отложения развиты повсеместно. Оруденение пространственно и генетически связано с придонной центральной частью Хаерлахской ветви Талнахского рудоносного интрузива габбро-долеритов и представлено тремя промышленными типами. Богатые (сплошные сульфидные) руды представлены Первой Хаерлахской (основной) залежи, протянувшейся в субширотном направлении в виде плитообразного тела на 1.6км, шириной 0.75, 0.9км с погружением в восточном – северо-восточном направлении с глубины 1000м до 1750м. Мощность залежи в среднем равна 20м, варьируя от 1м до 44.1м.


1.3. Тектоника


Главным структурным элементом талнахского рудного поля является зона Норильско-Хаерлахского разлома, которая представляет собой грабеноподобную структуру, проявившуюся серией сбросо-сдвиговых дислокаций. В зоне выделяют ряд субпараллельных швов с углами падения от 40 до 85о, из них наиболее крутым является восточное нарушение – главный шов. Нарушения, расположенные к западу от Главного шва (система западных сбросов), имеют более пологие углы падения. Амплитуды смещения вдоль тектонических зон колеблются от 50 до 400 м. Зона разлома делит всю площадь на две части – восточную и западную. Для восточной наблюдается ограниченное количество сбросов параллельных основной зоне разлома, для западной (Октябрьское месторождение) интенсивная тектоническая нарушенность, широкое развитие пликативных и дизъюнктивных дислокаций.

В центральной части 1 Хаерлахская залежь разбита серией субмередианальных субпараллельных дизъюнктивов на 4 клиновидных блока длиной 750-800м, смещенных вверх относительно залежи на 40 – 120м (Большой Горст), которые разделяют ее на западный блок (-1050, -1100) и восточный (1300, 1350, 1400). Угол падения залежи западного блока составляет 14-22о. С юго-востока к этой залежи примыкает вторая Северная залежь богатых руд, имеющая сложную конфигурацию в плане, протянувшаяся в юго-восточном направлении на 2.15км. Средняя мощность этой залежи 6-7м, с изменением от 1 до 22.3м. Глубина залегания составляет 1300-1400м. На востоке залежь осложнена взбросом, поднятым на 120м. Угол падения рудного тела на этом участке 8-12о.

Интенсивное проявление разрывной тектоники в районе обусловило соответствующее развитие тектонической трещиноватости. Наиболее трещиноваты рассланцованные породы Тунгусской серии, наименее – толстоплитчатые карбонатные породы девона и габбро-диориты верхней половины рудоносной интрузии.

В осадочных породах преобладают пологие трещины, в сплошных рудах – крутопадающие, в породах интрузии – наклонные и крутопадающие. По трещинам, особенно в породах нижней части рудоносной интрузии, расположены так называемые ослабляющие минералы типа хлорита, серпентина, талька, слюд, цеолита, вторичных сульфидов, графита и т.п.

С приближением к тектоническому нарушению трещиноватость руд и пород, как правило, увеличивается, образуя зону повышенной (или высокой) сопутствующей трещиноватости шириной в 0.5 – 0.8 амплитуды смещения по данному разлому. Такая зона в большинстве случаев асимметрична, ее ширина в висячем боку в 2 – 6 раз больше, чем в лежачем. Для сплошных руд указанные зависимости менее характерны, так как в них тектонические нарушения чаще всего имеют один вид.

«Пластовые» зоны высокой (или повышенной) трещиноватости мощностью до 5м отмечены в кровле и, реже, в почве сплошных руд, в непосредственной кровле горизонта существенно оливиновых разностей габбро-долеритов, в пикритовых габбро-долеритах и в кровле рудоносной интрузии.


1.4. Морфология тел полезного ископаемого


Формация траппов включает комплекс интрузивных горных пород, среди которых выделяют недифференцированные пластовые интрузии (силлы), крутосекущие тела и дайки в основном долеритового и габбро-долеритового состава и дифференцированные сульфидоносные интрузии. Промышленный интерес представляет полнодифференцированная Талнахская интрузия Талнахского рудного поля, которая объединяет несколько сближенных интрузивных тел.

Октябрьское месторождение приурочено к северо-западной ветви названного массива. Длина интрузии до 10км, ширина 1-1.5км, мощность до 200-250м. Горизонтом локализации интрузива являются ангидрито-мергелевые породы нижнего и среднего девона. Особенности внутренней структуры полнодифференцированных интрузий является их стратифицированность.

В пределах Талнахского интрузива выделяют следующие горизонты:

  • Горизонт верхних контактовых габбро-долеритов;

  • Горизонт кварцсодержащих габбро-долеритов, габбро-диоритов и диоритов;

  • Горизонт оливиновых и оливино-биотитовых габбро-долеритов, эти минералы слагают до 30 % массива;

  • Горизонт пикритовых габбро-долеритов;

  • Горизонт такситовых и раномернозернистых габбро-долеритов;

  • Горизонт контактовых и порфировидных габбро-долеритов.

К основным породообразующим минералам, слагающим интрузивный массив, относятся: оливин, пироксены, плагиоклазы. К второстепенной группе минералов относятся: магнетит, титаномагнетит, биотит, амфиболы. К вторичным – пренит, хлорит, кальцит и другие минералы.


1.5. Гидрогеология


Гидрогеологические условия рудника определяются геоморфологическими, структурными и мерзлотными факторами.

Подземные воды формируются за счет атмосферных осадков, проникающих в горные породы со склонов плато и в зоне сквозных таликов, питаются также водами поверхностных водоемов и водостоков.

Мощность мерзлоты меняется в пределах рудного поля от 10м (район ПЗС) до 180м (ВС-5, ВС-6). Сток поверхностных и надмерзлотных вод на территории месторождения хорошо зарегулирован и происходит по западному склону горы Медвежьей, имеющий значительный уклон к долине р. Шумный.

Водовмещающая толща коренных пород характеризуется незначительной водообильностью (общий водоприток по горизонтам составляет около 1 м3/час).

Естественная обводненность горизонтальных и наклонных выработок представлена увлажнением, капежом из кровли и бортов выработок, а также кратковременными струйными изливами из скважин. Распространение водопроявлений носит локальный характер. Результаты химических анализов свидетельствуют о том, что количественный состав подземных вод и их минерализация весьма различны и зависят от литологии пород и гидродинамических особенностей (условия питания, разгрузки, глубина залегания и т.д.) обводненных горизонтов. С увеличением глубины химический состав химический состав изменяется от гидрокарбонатно-сульфатно-натриево-кальциевого до сульфато-натриево-кальциевого.

Водопроявления в местах бурения шпуров и скважин приурочены, как правило, к зонам трещиноватости и отмечены на контакте интрузии с породой. Более высокой водообильностью отмечена зона Горста. Отмечены водопроявления с дебитом 0.01 м3/час. Но по мере срабатывания статистических запасов в линзах подземных вод уменьшается до 0.0005 м3, что указывает на низкий коэффициент фильтрации (к=0.00002 м/сутки), а также на отсутствие связи водоносных зон с крупными источниками питания.

В пределах шахтного поля существует ряд водопроявлений, находящихся под режимным наблюдением. В местах выхода источника периодически проводится отбор проб на агрессивность по отношению к бетону, результаты анализов свидетельствует об отсутствии таковых.

Основной водоприток в руднике формируется за счет обводненности стволов. Распределение дебита по стволам происходит следующим образом:

  • ВПС – 10-12 м3/час;

  • СС-3 – 4-5 м3/час;

  • ВС-5 – 5-6 м3/час;

  • ВС-6 – 6-7 м3/час;

Суммарный водоприток по руднику составляет 32-35 м3/час.


1.6. Физико-механические свойства руд и вмещающих пород


Объемные веса руд:

  • Богатые руды 1 Хаерлахской залежи – 4.2 т/м3;

  • Богатые руды 2 Северной залежи –4.0 т/м3;

  • Вкрапленные руды 2 Северной залежи –3.05 т/м3;

  • Медистые руды – 3.3 т/м3;

Значение коэффициента крепости по шкале М.М. Протодъяконова:

  • Для богатых руд – 5-10;

  • Для медистых руд – 5-16;

  • Для вкрапленных руд – 5-10;

  • Для вмещающих пород – 5-10.

Сульфидные руды склонны к окислению, разогреву, спеканию, самовозгоранию и слеживанию с выделением тепла (3400-4700 ккал на 1 м3 поглощенного кислорода). Температура пород в поле рудника колеблется в пределах 23-36о. В породах свободная кремнекислота отсутствует. Влажность руды в естественном залегании составляет 1-4 %, в отбитой массе – до 7 %.

1.7. Газоносность пород


Все породы и руды, слагающие поле рудника, газоносны. Наличие горючих газов, связанных с угленосными отложениями тунгусской серии (интервал 20-350м) и грантолитовыми сланцами нижнего силура (глубина залегания около 2000м) из которых газы могут мигрировать в вышележащую зону толщ. Установлено наличие углекислого газа, метана, тяжелых углеводородов, азота и гелия в газовых выделениях. Общий ожидаемый дебит составляет 450 м3/сутки.


1.8. Качественная характеристика руд и рудных минералов


Норильские медно-никелевые руды являются комплексными, из них современными технологическими методами извлекают цветные металлы: никель, медь, кобальт; благородные металлы: золото, серебро и главные элементы платиновой группы; кроме этого попутно получают селен, теллур и серу.

Помимо названных компонентов, руды содержат целый ряд других элементов, из которых важно отметить железо, уходящее в шлаки и вредные примеси, из которых главными являются, селен цинк и мышьяк, спорадически встречающиеся в рудах.

К числу шлакообразующих компонентов в первую очередь относятся окислы кремния, железа, алюминия, магния, кальция и некоторые другие.

Сульфидное оруденение генетически связано с крупной дифференцированной интрузией габбро-долеритов и представлено тремя основными типами руд:

  • Сплошными (наиболее богатыми)

  • Вкрапленными и прожилково-вкрапленными в породах нижней части интрузии

  • Вкрапленными и прожилково-вкрапленными в породах, вмещающих интрузию (медистые)

Минералы, слагающие норильские руды делятся на следующие четыре группы:

  1. Главные: пирротин, троилит, пентландит, халькопирит, талнахит, моикухит, путоранит, кубанит, магнетит.

  2. Второстепенные: горнит, марказит, миллерит, сфалерит, халькозин, минералы группы валерита.

  3. Редкие: алабанит, виоларит, годлевскит, ковеллин, маухерит, никелин, молибденит, станин.

  4. Минералы благородных металлов: сперрилит, урванцевит, самородные золото и серебро, минералы платины и палладия.


1.9. Типизация руд


В качестве главного классификационного признака служит минеральный состав рудной части с учетом количественных соотношений главных рудных минералов. При микроскопическом изучении шлифов руд выделены следующие устойчивые рудные ассоциации:

  1. Пентландит-халькоперит-пирротиновая.

  1. Пиррит-пентландит-халькопирритовая (с борнитом и сфалеритом)

  2. Пирротин-халькопирит-кубанитовая.

  3. Пирит-халькопиритовая (с милеритом и магнетитом)

  4. Борнит-халькопиритовая (с пиритом и милеритом)

  5. Пирит-магнетит-пирротиновая.

Изучение распределения различных рудных ассоциаций по разрезу показывает, что на Талнахском месторождении с полным основанием могут быть выделены одноименные минеральные типы руд (1 - 6).

Вещественный состав рудных минералов.

Пирротин: химическая формула меняется от FeS до Fe4S5

Пентландит: (Fe, Ni)9S8

Халькопирит: CuFeS2 - главный медьсодержащий компонент.

Талнахит: Cu18(Fe, Ni)18S32 - впервые найден на данном месторождении.

Кубанит: CuFe2S3 - второй после халькопирита сульфид меди.

Магнетит: FeFe2O4

Пирит: FeS2

Марказит: FeS2 и кроме того Ni, Co, Fe, S.

Миллерит: NiS - второй после пентландита минерал никеля.

Борнит: Cu5FeS4

Халькозин: Cu2S

Валерит: Cu3Fe4S7

Сфалерит: ZnS

Галенит: РbS

Минералы платиновой группы норильских руд обособляются в три группы:

  1. Самородные платиновые металлы и их сплавы друг с другом, железом, никелем, медью. Кобальтом.

  1. Интерметаллиды - Соединения платиновых металлов со свинцом, висмутом, оловом, теллуром, мышьяком и сурьмой.

  2. Сульфиды и арсениды платиновых металлов.

Все эти минералы находятся в рудах в тесной ассоциации друг с другом, образуя полиминеральные срастания среди сульфидов или на контакте сульфидов с магнетитом или силикатами.

1.10. Вскрытие и подготовка месторождения


Поле рудника «Таймырский» занимает площадь к востоку и юго-востоку от поля рудника «Октябрьский». Граница между рудниками по горному сбросу. Восточная граница отметок глубины 1500м.

Месторождение в пределах поля рудника характеризуется весьма сложным геологическим строением.

Поле рудника объединяет две основные залежи:

1 Хараелахскую и 2 Северную. В свою очередь 1 Хараелахская залеж серией сбросов делится на несколько отдельных рудных тел. Рудные тела резко отличаются по условиям залегания.


1.11. Схема вскрытия


В результате предпроектных проработок различных вариантов вскрытие богатых руд предусмотрено и осуществлено шестью вертикальными стволами и двумя откаточными горизонтами. На основной площадке расположены стволы: клетевой №3 (КС – 3), скиповой №3 (СС – 3); на вспомогательной – породозакладочный (ПЗС) и воздухоподающий (ВПС); вентиляционные стволы №5 и №6 (ВС – 5 и ВС – 6) расположены на северном фланге залежи. От вертикальных стволов залежь вскрыта горными выработками откаточных горизонтов – 1050м и – 1300м.

Размещение стволов определялось с учетом ряда факторов, а именно: условия залегания рудных тел, рельеф местности, гидрогеологические данные разведочного и контрольного стволового бурения, меры охраны стволов от вредного влияния горных работ т.п. Немаловажным является также фактор размещения поверхностных объектов рудника во взаимосвязи с существующими и строящимися объектами и коммуникациями.

Сечения стволов определены проектом из условий размещения в них подъемных сосудов и пропуска расчетного количества воздуха.

1.12. Характеристика стволов


Скиповой ствол №3 (СС - 3).

Размещается в 198м к юго-востоку от скипового ствола №2 (рудник «Октябрьский»).

  • диаметр ствола в свету – 6.5м;

  • глубина – 1503м;

  • высота над уровнем моря – 103м;

  • сопряжения на отметках: -1130 м, -1330 м (дозаторные), -1050 м, -1100 м, -1300 (ходки), -1400 м (зумпфовый водоотлив).

Ствол оснащен двумя многоканатными подъемными установками типа МК 5х4 грузоподъемностью 25 т с навеской четырех скипов 2СН 11-24 емкостью 11м3 каждый и служит для подъема руды с горизонтов –1050 м и –1300 м.


Клетевой ствол №3 (КС - 3).

Расположен в 198м к юго-востоку от клетевого ствола №2 рудника «Октябрьский».

- диаметр ствола в свету – 8м;

- глубина – 1532м;

- высота над уровнем моря – 106.3м;

- сопряжения на отметках: -1050м,-1100м,-1200м, -1300м, -1130м (заезд в дозаторную), -132.5м (зумпфовый водоотлив).

Ствол оборудован двумя клетевыми подъемными установками, одна из которых оборудована многоканатной подъемной машиной МК 5х4 грузоподъемностью 25 т и клетью 1КН - 7.2 (размеры в плане 7.2х2.8 м) с противовесом. В клети осуществляется спуск-подъем людей и грузов (в том числе крупногабаритного самоходного оборудования). Вторая подъемная установка оборудована многоканатной подъемной машиной типа ЦШ 4х4 грузоподъемностью 14 т и клетью 1КП - 4.5 (размеры в плане 4.5х1.5 м) с противовесом. Клеть предназначена для спуска-подъема людей и, материалов и оборудования в вагонах или на платформах. По стволу проложены трубопроводы главного водоотлива, сжатого воздуха и кабели.


Породозакладочный ствол (ПЗС).

Распологается в 1100м от вспомогательно-закладочного ствола рудника «Октябрьский».

- диаметр ствола в свету – 6.5м;

- глубина – 1413м;

- высота над уровнем моря – 92.2м;

- сопряжения на отметках: -896м,-946м,-1046м, -1146м, -1096м, -1146м, -1196м, -1296м, -1336м (дозаторная), -1390.5м (зумпфовый водоотлив).

Назначение ствола – подъем породы, спуск-подъем людей, подача свежего воздуха. Ствол оснащен двумя клетевыми подъемными установками, оборудованных многоканатными подъемными машинами ЦЩ 3.25х4 и двумя клетями 1КН - 4.5 - I с противовесами.

По стволу прокладывается четыре става труб диаметром 325 мм для подачи закладочной смеси.


Воздухоподающий ствол (ВПС).

Распологается в 300м к востоку от ПЗС.

- диаметр ствола в свету – 8м;

- глубина – 1430м;

- высота над уровнем моря – 98.5м;

- сопряжения на отметках: -895м,-946м (сбойка с ПЗС), -1045м, -1070м (временная дозаторная), -1095м, -1195м, -1295м. (зумпфовый водоотлив).

Ствол оборудован двумя скиповыми подъемными установками. Западная двухскиповая подъемная установка с подъемной машиной 2Ц - 6х2. 8Д выдает горную массу с гор. –1050 м, восточная двухскиповая подъемная установка с подъемной машиной 2Ц - 5х2.3 выдает горную массу с гор. –1300 м. Емкость скипов западного подъема – 4.6 м3, восточного – 5.2 м3.

По ставу проложены два бетоновода, трубопровод сжатого воздуха и противопожарный трубопровод.

Ствол предназначен для подъема породы и подачи свежего воздуха.


Вентиляционный ствол №5 (ВС - 5).

Распологается в 1100м к востоку от ВС - 3 рудника «Октябрьский».

- диаметр ствола в свету – 6.5м;

- глубина – 1347.1м;

- высота над уровнем моря –2 93.0м;

- сопряжения на отметках: -950м, -975м, -1025м, -1000м, -1043м (зумпфовый водоотлив).

Ствол оснащен двумя одноканатными подъемными установками ШПМ 1-5х3 с навеской клети и бадьи емкостью 3 м3. Предназначен для выдачи исходящей струи с горизонтов –1050 м –1100 м. У устья ствола установлен вентилятор ВЦД – 47м.


Вентиляционный ствол №6 (ВС - 6).

Распологается в 150м к востоку от ВС - 5.

- диаметр ствола в свету – 6.5м;

- глубина – 1600м;

- высота над уровнем моря –278.0м;

- сопряжения на отметках: -950м, -1100м, -1047м, -1200м, -1250м, -1278м, -1302м (зумпфовый водоотлив).

Ствол оснащен двумя одноканатными подъемными установками ШПМ 1-5х3 с навеской клети и бадьи емкостью 3м3. Предназначен для выдачи исходящей струи с нижних горизонтов, служит запасным выходом. У устья ствола установлен вентилятор ВЦД – 47м.


1.13. Эксплуатационные горизонты


Поле рудника «Таймырский» разделено на четыре горизонта, имеющие связь со стволами СС - 3, КС - 3, ПЗС, ВПС.


Горизонт –1050 м.

Служит для вскрытия и отработки запасов верхней (у границы рудника «Октябрьский») и средней (взброшенной) частей 1 Хаерлахской залежи.


Горизонт –1150 м.

Служит для вскрытия и отработки запасов средней части 1 Хаерлахской залежи.


Горизонт –1300 м.

Служит для вскрытия и отработки запасов верхей части 2 Северной залежи.


Горизонт –1345 м.

Служит для вскрытия и отработки запасов нижней части обеих залежей.


1.14. Системы разработки применяемые на руднике “Таймырский”


Большая глубина залегания и неблагоприятные физико-механические свойства вмещающих пород Талнахского месторождения предупредили вскрытие вертикальными стволами.

Исходя из опыта отечественной и зарубежной практики, вскрытие осуществлено на всю глубину месторождения, так как при этом нет необходимости при эксплуатации останавливать очистные работы для углубки стволов.

На руднике “Таймырский” применяется следующая система разработки: сплошная слоевая с бетонной /твердеющей/ закладкой отработаного пространства с применением мощного самоходного оборудования с дизельным приводом.

Применяются два варианта системы:

1) выемка восходящими горизонтальными или слабо наклонными слоями

2) камерно-целиковая выемка

Сущность восходящего порядка выемки слоев состоит в том, что рудное тело разделяется на ленты шириной 8 м, ширина очистного пространства принята с учетом результатов испытаний физико-механических свойств и нарушенности руд и пород рудника “Таймырский”, а также практика, применения камерно-целиковых систем разработки на других рудниках, которые отрабатываются слоями снизу вверх с оставлением между кровлей слоя и закладкой свободного пространства. Ленты длинной стороной распологаются по простиранию так, чтобы их почва имела уклон, равный углу растекания закладки (5-6град.) Очистные работы начинают с выемки центральной ленты, и развивают в дальнейшем в обе стороны (по падению и восстановлению) к фланговым уклонам. Для заезда самоходного оборудования с каждой стороны поля пройдены два транспортных уклона. Расстояние между ними 328,5м. Затем на флангах транспортного уклона проходят панельные квершлаги в крест простирания залежи и разделяют поле на панели шириной 120м. Из панельного квершлага в каждой панели проходится диагональный уклон до кровли залежи, из которой нарезаются слоевые орты. Вентиляционный и откаточный горизонты имеют общую схему подготовки и связаны с очистными выработками системой рудоспусков и вентиляционных восстающих, которые служат для вентиляции и переспуска руды.

Выемку запасов производят в три стадии:

1) отработка нижнего слоя;

2) отработка основного слоя;

3) отработка подкровельного слоя.

При камерно-целиковой системе разработки панель разделяют на секции, включающие три ленты по 8 метров, отрабатваемые в две очереди: в первую - нечетные ленты слоями снизу вверх, а во вторую очередь среднюю ленту (целик) вертикальными слоями на всю мощность рудного тела, после полной выемки и закладки примыкающих к ней лент. Подготовка и технология очистной выемки слоями снизу вверх остается без изменений. Для обеспечения доступа самоходного оборудования в район камер, необходимые выработки сохраняют в панельном целике.

Конструкция днища камер может быть рудной и бетонной. Для оформления рудного днища в почве смежной с камерой ленты оставляют рудный слой мощностью 3,5-4 метра, в котором проходят по границе оставляемого рудного слоя, который отрабатывают после выпуска руды из камеры и ее закладки.


2. Механическое оборудование


2.1. Подземный транспорт


Совокупность операций по загрузке и перемещению грузов в пределах горного предприятия, как в шахте, так и на поверхности носит название “рудничный транспорт”.

Рудничный транспорт имеет весьма важное значение для всей работы рудника. Лишь при четкой и бесперебойной работе транспорта наиболее полно реализуются технические возможности выемочного оборудования, создаются условия для роста добычи, повышение производительности труда и снижение себестоимости продукции.

Все транспортные устройства и их работа должны быть технически и организационно увязаны между собой в общем комплексе горных работ.

Основными требованиями, предъявляемыми к транспортному оборудованию, являются своевременное и бесперебойное перемещение полезного ископаемого и породы из забоев. В связи с этим транспортные установки должны иметь производительность, соответствующую производительности забоев при применении наиболее совершенных и прогрессивных средств механизации. Несмотря на относительно высокий уровень механизации и возрастающую техническую оснащенность внутришахтный транспорт до настоящего времени является еще весьма трудоемким и дорогостоящим процессом и не всегда обеспечивает бесперебойную высокопроизводительную работу очистных и горнопроходческих комплексов.

Организационная работа на транспорте должна иметь следующее содержание:

взаимоувязка всех звеньев транспортной системы по пропускной способности и во времени;

рациональная расстановка вагонного парка;

выбор наиболее рациональных маршрутов движения;

выделение необходимого времени на профилактическое обслуживание транспортных средств;

оперативное регулирование работы транспорта.

Основой организации работы внутришахтного транспорта является работа всех его звеньев по заранее составленому графику. Графики работы нестационарных траспортных средств, называемых графиками движения, составляютрся на основе рассчета продолжительности одного цикла (рейса), с учетом длины транспортирования, скорости движения транспортных средств и простоев в местах разгрузки,погрузки и разминовок.

Продолжительность одного рейса:

Т = vг / L+ vп / L + tп + tр , (2.1)

где: Тр - продолжительность одного рейса, мин.;

L - протяженность маршрута, м.;

v г и vп - средние скорости движения поезда соответственно с грузом и порожним составом, м/с;

tг и tп - продолжительность маневров соответственно при погрузке и разгрузке составов, мин.

Число электровозов, необходимых для обслуживания каждого маршрута участка, определяется по формуле:

N = Кн ( Q / Тр Топ ), (2.2)

где: Q - сменный плановый грузопоток;

Кн - коэффициент неравномерности грузопотока;

Тр - число вагонов в составе;

Топ - время работы электровоза по транспортировке груза.

Применяемое оборудование на подземном транспорте рудника “Таймырский”:

- Электровоз КР-2А, сцепной вес 14т, применяется для транспортировки руды и породы;

- Электровоз 10 КР, сцепной вес 10т, применяется для перевозки людей и маневровых работ;

- Электровоз АМ8 (аккумуляторный), сцепной вес 8,5т, применяется для транспортировки породы при проходческих работах;

- Вагоны УВГ-4, емкость 4м3 , для транспортировки руды;

- Вагоны УВБ-4, емкосеь 4м3 , для транспортировки породы и других грузов;

- Вагоны ВП-18 , пассажирский вагон на 18 мест;

- Платформы для транспортировки оборудования и материалов;

- Вибролюки и люки для погрузки горной массы;

- Круговые опрокиды для выгрузки вагонов УВГ-4;

- Рельсы Р-38 и Р-43;

- Стрелочные переводы марки 1/5,1/7Р-43.


Организация работ по транспортировке руды.

Транспортировка руды с добычных участков до скипового подъема осуществляется контактными электровозами по кольцевой схеме гружеными составами под уклон, порожними на подъем.

Погрузка руды в вагон осуществляется люковым рабочим добычного участка, который руководит маневровыми работами при погрузке, регулирует неравномерность и своевременность отгрузки руды со своего участка, дает заявку оператору ВРТ на подачу очередного порожняка.

После загрузки состава машинист электровоза в одном лице, самостоятельно без запроса, транспортирует груз строго соблюдая установленную схему откатки и, руководствуясь двухсветовой безконтактной сигнализацией, к скиповому подъему на круговой опрокид. До разгрузки вагонов работники ОТК с каждого состава берут пробу на анализ.

Разгрузка руды на круговом опрокиде осуществляется опрокидчиком - рабочим участка ВШТ, который осуществляет работу опрокида с дистанционного пульта управления и ведет учет количества разгрузившихся вагонов с каждого участка.

Характеристика подвижного состава.

Контактный электровоз типа 14 КР-2А.

ширина колеи - 750мм;

сцепной вес - 14 т;

сила тяги в часовом режиме - 2400 кт;

Грузовая вагонетка типа УВГ-4 .

Емкость - 4м.куб;

вес вагонетки - 2950кг;

грузоподьемность - 10т;

вес вагонетки при нормальном заполнении:

а) порода р п =2 т/м3, Рп= 2  4 = 8 т ;

б) руда рр = 2,7 т/м3, Рр =2,7  4 = 10,8 т.

Вес богатой руды превышает грузоподьемность вагонетки. Поэтому при погрузке следует учитывать не наполнение, чтобы не превышать максимальную грузоподьемность - 10 т. Величина состава поезда принята (с учетом груза) согласно рассчету по условию торможения - 8 вагонов.

После выгрузки вагонетки с рудой на круговом опрокиде машинист электровоза посредством телефонной связи получает указания отоператора ВШТ, на какой участок он должен следовать для последующей отгрузки руды. И так циклы повторяются непрерывно. В связи с неравномерностью погрузки вагонеток на погрузочных пунктах по времени в ределах от 10 до 30 и более минут, время за один цикл колеблется в широких пределах и за 7 час. работы составляет в среднем 70 мин, что превышает расчетное время на 18 мин или составляет 6 рейсов в смену с производительностью 48 вагонеток на один локомотиво-состав.

Для обеспечения своевременной отгрузки руды с добычных участков на откатке ежемесячно работает 10 локомотивосоставов. Работа по отгрузке руды с добычных участков организована круглосуточно, за исключением праздничных дней. Смены машинистов электровозов по 8 часов, из них по 30 мин на прием и сдачу электровозов и подвижного состава. Итого рабочего времени 7 часов. В дневную смену до 12.00 отгрузка руды не производится (профилактический ремонт оборудования по руднику). В это время подвижной состав используется на зачистке откаточных горных выработок по участкам.

Для транспортировки горной массы с промежуточных участков применяются аккумуляторные электровозы АМ-8 и вагоны УВБ-4.

Доставка материалов и оборудования осуществляется согласно заявок, поданных участками подразделений руднка. Траспортировка рабочих рудника от рудного ствола к месту работы и обратно осуществляется в вагонах ВП-18 согласно расписанию движения пассажирских поездов, утвержденного главным инженером.


Виброленты-питатели для рудоспусков.

Виброленты-питатели типа ВРЛ-1,ВРЛ-2,ВРЛ-3 - устанавливаются на погрузочных пунктах в рудоспусках для создания возмущающей силы на направляющей для выпуска руды.

Таблица 2.1.

Техническая характеристика вибраторов.


Наименование показателей

Ед.

ВРЛ-1

ВРЛ-2

ВРЛ-3

Техническая производительность

т/ч

350

500

500

Грузо-несущя способность

Т.

без ограничения

Размеры кондиционного куска

Мм

500

800

800

Вес двигателя

кг

200

550

700

Возмущающая сила вибраторов

кг

800

1000

1300

Частота колебаний

1/об

2800

2800

2800

Мощность эл.двигателя

кВт

0,6

1,5

1,5

Угол наклона к горизонту

Град

20

20

20

Тип вибратора


ИВ-21

ИВ-24

ИВ-24


Круговой опрокид.

Опрокидыватель типа ОКЭ-2 предназначен для разгрузки глухих вагонов емкостью 4 м.куб. без расцепления состава путем поворота ротора с вагоном вокруг оси вращения на 360 градусов.


Таблица 2.2.

Техническая характеристика ОКЭ-2.


Наименование показателей

Ед.

Величины

Габаритные размеры

Длина

Ширина

Высота

мм



11790

6300

4480

Длина ротора по оси дисков

мм

7700

Диаметр концевых дисков

мм

4400

Диаметр приводных роликов

мм

500

Общее передаточное число


320

Количество одновременно

Работющих приводов

шт

4

Тип электродвигателя

  • мощность

  • число оборотов



КВт

1/мин

АО-2-61-10

1

970

Производительность

Опрокидывателя

Ваг/ч

200


2.2. Комплексы самоходного оборудования, применяемого на руднике “Таймырский”


Выемку запасов производят в три стадии: отработка нижнего, основного и подкровельного слоя.

Комплекс для отработки нижнего слоя.

В состав комплекса входят:

  • - буровая самоходная установка типа: “Меди - Бор” и “Бумер”;

  • - погрузо-доставочная машина типа: “ЛФ-27” и “КССМ-6”;

- самоходная каретка для оборки и осмотра кровли “ПЕК-22” и “КССМ-6”;

  • - торкрет-установка “Алива-300”.

Комплекс отработки основного слоя с отбойкой руды восстающими шпурами, в который входит оборудование:

  • - буровая самоходная установка типа “Бумер-135”;

  • - погрузо-доставочные машины типа “ЛФ-12”, “АФ-12”, “КССМ-9”;

  • - самоходная каретка для оборки и осмотра кровли типа “ПЕК-22”, “ПЕК-24”.

Комплекс для отработки подкровельного слоя, в который входит следующее оборудование:

  • - буровая самоходная установка типа “БУМЕР-135”;

  • - погрузо-доставочная машина типа “АФ-12” и “КССМ-12”;

  • - самоходная каретка для осмотра и оборки кровли “ПЕК-24”;

  • - торкрет-установка “АЛИВА-300”.

Комплекс для отработки целика при камерно – целиковой системе разработки, в который входит следующее оборудование:

  • - буровая установка типа “Меди-Бор” и “Бумер-127” - при проходке транспортно-доставочного штрека, верхнего и нижнего разрезного штрека;

  • - буровая установка типа “Фэн-Дрилл” - для разбуривания целика;

  • - самоходная каретка для осмотра и оборки кровли типа “ПЕК-24” ;

  • - торкрет-установка типа “АЛИВА-300”.


2.3. Вентиляция рудника


2.3.1. Общие положения

Большая глубина разработки месторождения, наличие в рудах и вмещающих породах метана, высокие температуры руд и пород, высокая окисляемость отбитых сульфидных руд, применение ВВ на отбойке горной массы, а также самоходного оборудования с дизельным приводом на бурении, доставке, зачистке, креплении выработок и на вспомогательных работах требуют применения искусственного проветривания поверхностными вентиляторами.


2.3.2. Схема и способ проветривания рудника

Проветривание рудника «Таймырский» осуществляется всасывающим способом по фланговой схеме. Свежий воздух с поверхности в подземные выработки на рабочие горизонты – 950м, - 1100м, - 1300м поступает по вертикальным стволам: КС – 3, СС – 3, ПЗС, ВПС, за счёт общешахтной депрессии, создаваемой главными вентиляторными установками на вентиляционных стволах ВС – 5, ВС – 6. Далее по откаточным и транспортным выработкам поступает в очистные, подготовительные, нарезные выработки и технологические камеры. После проветривания очистных работ, подготовительных и нарезных проходческих забоев и камерных выработок исходящая струя воздуха выдаётся на выработки вентиляционно–закладочных горизонтов – 950м, - 1000м, - 1200м и далее направляется к стволам ВС – 5 и ВС – 6, по которым вентиляторами ВЦД - 47м «Север» выбрасывается на поверхность в атмосферу.

Все воздухоподающие стволы рудника оборудованы калориферными установками для подогрева свежего воздуха в холодные периоды года. Каждая калориферная установка состоит из системы калориферов марок ТРВВ – 8 и ВО – 146/1510 – 71 – Н – УХЛ4. Подогретый воздух калориферными вентиляторами ВОД – 40 на стволах КС – 3 и ПЗС смешивается с холодным атмосферным воздухом в смесительных камерах и направляется по вентиляционным каналам в стволы.

Вентиляторные установки ВЦД - 47м «Север» на стволах ВС – 5 и ВС – 6 имеют по два агрегата (вентилятора) каждый – рабочий и резервный, которые работают поочередно согласно графика. Каждая вентиляторная установка оборудована приборами контроля подачи (производительности) и давления (депрессии).

Очистные выработки на руднике проветриваются за счёт общешахтной депрессии. Проветривание тупиковых проходческих забоев осуществляется вентиляторами местного проветривания ВМ – 12 и ВМЭ – 6 нагнетательным способом и сжатым воздухом после взрывных работ. Камерные выработки – склады ВМ, камеры ГСМ, камеры СДО, депо аккумуляторных электровозов проветривается обособленной струей воздуха.

Вентиляционная схема проветривания рудника предусматривает возможность реверсирования воздушной струи в аварийных случаях. При реверсировании воздушной струи в холодное время года проектно предусмотрен подогрев подаваемого в шахту воздуха по ВС – 5, ВС – 6 с помощью газового воздухонагревателя ВГС – 6,3, установленного у каждой вентиляционной установки на поверхности и соединённого с ней вентиляционным каналом.

Калориферные установки на КС – 3 и ПЗС в аварийном режиме (остановка калориферного вентилятора) работают на прямотоке с поступлением наружного воздуха в стволы.

Эквивалентное отверстие – 22,99 м2. Количество воздуха необходимое для проветривания рудника Q=808,6 м3/с.


Таблица 2.3.

Потери воздуха.


Утечки

М3

от QВ, %

Внешние утечки



Утечки через копёр ВС – 5.

48

9,6

Утечки через копёр ВС – 6.

35

9,0

Внутренние утечки



Гор.- 950 м.

10


Гор.- 1200 м.

32




Таблица 2.4.

Характеристика вентиляторов главного проветривания.


Наименование

ГВУ ВС-5

ГВУ ВС-6

Вентиляторы

ВЦД-47м

«Север»

ВЦД-47м

«Север»

Диаметр рабочего колеса вентилятора, мм

4700

4700

Число ступеней (рабочих колёс).

2

2

Производительность до реверсирования, м3/с.

501

391

То же после реверсирования, м3/с.

436

383

Развиваемая вентилятором депрессия до реверсирования, мм. вод. ст.

270

300

То же после реверсирования, мм. Вод. Ст.

270

260

Номинальная скорость вращения колеса вентилятора, об/мин.

450

490 с закр. УСМ на 45

Способ управления реверсивными и переключающими устройствами.

Полуавтомат

Полуавтомат

Время перехода вентилятора на реверсивный режим работы, мин.

5

5



Таблица 2.5.

Баланс воздуха по руднику.


Входящая струя

М3

Исходящая струя

М3

Клетьевой ствол №3

Скиповой ствол №3

Породо – закладочний ствол (ПЗС)

Воздухо – подающий ствол (ВПС)

Сжатый воздух

266,0

100,0

244,0

178,0

30,0

Вентиляционный ствол №5 (ВС-5)

Вентиляционный ствол №6 (ВС-6)

457,0


361,0



3. Электроснабжение горного предприятия


Для покрытия всей нагрузки основной площадки сооружена отдельно стоящая ГПП-33 с трансформаторами 2 х 32 мВА.

Ру-6кВ ГПП-33 выполняется с одинарной системой шин, секционированной из 4 секций с АВР на секционном выключателе и комплектуется из камер серии К-ХХIII, К-ХХIV с выключателями ВЭМ-6 (Sоткл = 350 МВА). На отходящих от ГПП линиях устанавливаются токоограничивающие реакторы.

При турбокомпрессорной и надшахтном здании КС-3 сооружаются распределительные подстанции РП-305 и РП-363, от которых радиальными линиями питаются трансформаторные подстанции, эл.двигателей 6кВ и подземные центральные и распределительные подстанции.

Передача электрической энергии от ГПП-ЗЗ к Турбокомпрессорной и стволам КС-З и СС-З осуществляется по кабельным линиям.

На площадках рудника “Таймырский” сооружены три главных понизительных подстанции.

На основной площадке ГПП-33 с трансформаторами 2х32 МВА; на площадке вспомогательных стволов ГПП-32 с трансформаторами 2х25 МВА; на площадке вентиляционных стволов №5 и №6 ГПП-35 с трансформаторами 2х16 МВА. Схемы коммутации ГПП приняты без выключателей на стороне высшего напряжения с установкой отделителей в цепях трансформаторов и передачей отключающего импульса на головной выключатель питающей линии по высокочастотным каналам. Для питания электрической энергией рудника “Таймырский” сооружены две ВЛ-110кВ от секции ЗРУ-110кВ ТЭЦ-2.

От РП-305 питаются электродвигатели турбокомпрессоров и насосов оборотного водоснабжения.

От РП-363 поверхность и подземные потребители комплекса КС-3.

В надшахтном здании ПЗС сооружена распределительная подстанция 6 кВ - РП- 352. От РП-352 питаются подъемные машины ПЗС и трансформаторные подстанции в районе ствола ПЗС.

На площадке вентиляционных стволов № 5 и 6 сооружается отдельно стоящая ГПП-35. Основными потребителями электроэнергии являются две вентиляторные установки ВЦД-47, подъемные машины на ство­лах № 5 и 6 и подземные электроустановки. В здания вентиляторных установок встраиваются РП-360 и ТП-360 на ВС-5 и РП-361 и ТП-361 на ВС-6. От РП получают питание электродвигатели 6кВ вентиляторных установок, трансформаторные подстанции и подземные подстанции.

Предусматриваются следующие виды защиты.

На силовых трансформаторах ГПП-33, ГПП-35:

  • продольная дифференциальная защита;

  • на ГПП-35 – максимальная токовая защита на стороне высшего напряжения с двумя выдержками времени;

  • На ГПП-33 - максимальная токовая защита с выдержкой времени; максимальная токовая защита с выдержкой времени на вводах 6 кВ;

  • газовая защита в баке трансформатора действующая на отклонение и сигнал;

  • газовая защита в баке переключающего устройства, действующая на отключение;

  • реле уровня масла с действием на сигнал;

  • защита от перегрузки на вводах 6кВ с действием на сигнал;

От защит дифференциальной, газовой, максимальной со стороны высшего напряжения предусматривается передача отключающего импульса на головной выключатель питающей линии 110кВ на ТЭЦ-2 и ПП-110кВ, после отключения, которого в бестоковую паузу поизводится отключение поврежденного трансформатора с помощью отделителя. Для передачи сигналов телеотключения применяется аппаратура типа ВЧТО-М. Каналы связи организуются по линиям электропередач 110кВ.

На секционных масляных выключателях ГПП и РП:

Предусматривается максимальная токовая защита с выдержкой времени ускорением при действии АВР. На линиях, питающих РП предусматривается максимальная токовая защита с выдержкой времени, земляная защита с выдержкой времени с действием на сигнал.

На линиях, питающих ТП, предусматривается максимальная токовая защита с выдержкой времени, токовая отсечка и газовая защита для внутрицеховых ТП.

На линиях, питающих подземные электросети 6кВ, предусматривается максимальная токовая защита с выдержкой времени, направленная защита нулевой последовательности с действием на отключение, защита минимального напряжения с действием на отключение.

Предусматриваются следующие автоматические устройства:

  • АВР на секционных выключателях 6кВ ГПП-33 и ГПП-35 при отключении одного из трансформаторов или питающей линии. АВР с частотным пуском и контролем направления мощности;

  • АВР на секционных выключателях 6кВ РП-360, 361, 363, 305. АВР с частотным пуском и контролем направления мощности;

  • АВР на щитах 0,4кВ на ГПП;

  • АПВ вводов 6кВ при отключении на длительное время одного из трансформаторов, которое вводится вручную на оставшемся в работе трансформаторе;

  • АЧР, на ГПП-33 отключаются линии скиповых машин, на РП-305 - линии компрессоров;

  • автоматическое управление переключателем напряжения под нагрузкой на силовых трансформаторов ГПП;

  • автоматическое управление обдувкой трансформаторов ГПП;

  • автоматические осциллографы для записи аварийных процессов на ГПП-33, ГПП-35, ПП-110;

  • АВР на секционировании линий 110кВ, на переключательном пункте;

АПВ линий 110кВ на переключательном пункте.

Управление вводными и секционными выключателями 6кВ на ГПП предусматривается со щита управления, на котором размещается также аппаратура защиты и автоматики силовых трансформаторов и секционных выключателей. Управление выключателями линий 6кВ производится с помощью ключей, установленных на камерах КРУ и КСО.


3.1. Диспетчеризация


Предусматривается двухступенчатая диспетчеризация объектов электроснабжения: от диспетчера сетей и подстанций Талнахского района и от диспетчера энергоснабжения рудника “Таймырский”.

Предусматривается следующий объем телемеханизации.

На ГПП:

  • телесигнализация положения выключателей вводов, секционных, отходящих линий на РП, секционных и линейных отделителей, короткозамыкателей в нуле;

  • телесигнализация неисправности трансформаторов, земли в сети 6кВ, аварии, неисправности пожарной опасности;

  • телеуправление секционным масляным выключателем.

На переключательном пункте:

  • телеуправление всеми выключателями 110кВ;

  • телесигнализация аварии, неисправности пожарной опасности.

На РП: сигнализация положения выключателей вводов и секционных, сигнализация аварии, неисправности пожарной опасности.

В качестве каналов связи для телемеханики используются свободные телефонные пары в телефонной сети, проверенные на затухание.


3.2. Канализация электрической энергии


Воздушные линии электропередач 110кВ.

Магистральные линии от ТЭЦ-2 до отпайки к ГПП-33 провод марки АСО-240, от отпаек на ГПП-33 до отпаек на ГПП-32 – АСО-150.

Отпайки ВЛ к ГПП-33 выполняются проводом АС-120 на деревянных опорах.

Отпайки ВЛ к ГПП-32 выполняются проводом АС-95.

Отпайки ВЛ к ГПП-35 выполняются проводом АС-95 на деревянных опорах, рассчитанных для IV гололедного района, ввиду большого перепада высот по трассам ВЛ.

Проектируемые линии от грозовых перенапряжении защища­ются тросами по всей длине ВЛ.

Все тросовые опоры подлежат заземлению. На пересекаемых трубо и газопроводах устанавливаются защитные решетки, и предусматривается устройство повторных заземлителей.

Для пихания собственных нужд ПП-110 предусматривается сооружение воздушной линии б кВ от ГПП-30 ( второе питание по кабельной линии от ГПП-32).

Линия выполняется проводом АС-50 па деревянных опорах.


Внецеховые кабельные сети 6 и 0,4 кВ.

Внецеховые сети площадок рудника, электрические связи между главными понизительными, распределительными и трансформаторными подстанциями решены кабельными линиями. Кабели приняты бронированные, с алюминиевыми жилами.

Прокладка кабелей выполняется в кабельных тоннелях, каналах, на кабельных конструкциях по стенам зданий, в земляных троншеях, по кабельным эстакадам.


Подстанции.

ГПП-33, на основной площадке рудника, устанавливаются два силовых трансформатора ТРДН-32000/110, с расщепленной обмоткой НН, с регулированием напряжения под нагрузкой.

Схема коммутации ГПП-33 принята с установкой отделителей в цепях трансформаторов и устройством перемычки со стороны трансформаторов.

В перемычке устанавливаются разъеденитель и отделитель. Короткозамыкатели в цепях трансформаторов устанавливаются для резервирования передачи отключающего импульса.

Распределительное устройство 6кВ выполняется закрытого типа. Схема РУ-6 кВ выполнена с одинарной системой шин, секционированной на 4 секции, с АВР на секционных выключателях. Оперативный ток на ГПП-33 – постоянный. Закрытая часть выполняется двухэтажной с расположением на 2-м этаже РУ-6 кВ, токоограничивающих реакторов на отходящих линиях и щита управления; на первом этаже – кабельное помещение, камеры для установки разъеденителей за реакторами и КТП-2х250кВА для собственных нужд ГПП-33.

На ГПП-35 устанавливаются два силовых трансформатора ТДН-16000/110, с регулированием напряжения под нагрузкой. РУ-6 кВ комплектуется шкафами серии КРУ-2-6Э с выключателями ВМП-10К с приводами ПЭ-11.

ПП-110кВ выполняется закрытого типа, распологается на площадке вспомогательных стволов.

РУ-110кВ ПП состоит из 5 ячеек с воздушными выключателями ВВН-110А-6 и 2 ячеек с трансформаторами напряжения и разрядниками. Ошиновка РУ-110кВ выполняется гибкими сталеалюминиевыми проводами.

На открытой части ПП-110 устанавливаются приемные порталы и аппаратура В.Ч. связи. В щитовом блоке располагаются: щиты защиты и управления воздушеными выключателями, аккумуляторная батарея СК-3, компрессорная для подачи сжатого воздуха к приводам выключателей и разъеденителей и трансформаторная подстанция 2КТП-250 для питания собственных нужд ПП-110.


Распределительные и трансформаторные подстанции.

Распределение электрической энергии на напряжении 6кВ к высоковольтным электродвигателям и трансформаторным подстанциям 6/0,4 кВ по поверхностным сооружениям площядок рудника предусматривается как с шин ГПП, так и от рапределительных подстанций 6кВ.

РП-6кВ располагается в местах сосредоточения нагрузок электрических потребителей, и комплектуются из шкафов типа КРУ2-6Э и КСО-266.

Распределение электрической энергии на напряжении 400/230 В для питания силовых электроприемников цехов и освещения производится от цеховых ТП 6/0,4 кВ.

Цеховые ТП выполнены по типовому проекту – комплектные трансформаторные подстанции (КТП) двухтрансформаторные с мощностью трансформаторов 630-1000 кВА.


3.3. Расчет электроснабжения комплекса поверхности


Составим укрупненную однолинейную схему.

Определим расчетную нагрузку ГПП-33

По методу коэффициента спроса принимаем

Для всей нагрузки принимаем cos=0,8

, (3.1)

, (3.2)

, (3.3)

для ЭКГ-190

,

,

.

Результаты остальных расчетов сведены в таблице.


Таблица 3.1.

Ведомость электрических нагрузок на ГПП-33.


Наименование

Кол-во, шт.

Руст.

КВт

Кс

Cos

Рр,

КВт

Qр,

КВАр

Sр,

КВА

РП-309:








ЭКГ-190

1

250

0,7

0,8

175

131

219

ЭКГ-121

1

250

0,7

0,8

175

131

219

ТП-309

1

800

0,7

0,8

560

420

700

Двиг. Конвейеров СС-3

2

320

0,7

0,8

224

168

280

Двиг. Конвейеров СС-3

2

500

0,7

0,8

350

263

438

ТП-312

1

1600

0,7

0,8

1120

840

1400

РП-363








Насосы

3

500

0,7

0,8

350

263

438

ТП-363

1

1600

0,7

0,8

1120

840

1400

ПМ1 клетьевой подъем

1

1600

0,7

0,7

1120

840

1400

ПМ2 клетьевой подъем

1

3500

0,7

0,7

2450

1838

3063

ВОД-40 (СД)

1

1600

0,7

-0,9

1120

0

1120

РП-365








ПМ скиповой подъем

2

5000

0,7

0,7

3500

2625

4375

ТП-365








ТМЗ

1

800

0,7

0,8

560

420

700

РП-305








Компрессоры СД

8

3200

0,7

-0,9

2240

0

2240

Насосы


1250

0,7

0,8

875

656

1094

Вспом. Привода


1000

0,7

0,8

700

525

875

Суммарная расчетная нагрузка всей ГПП-33

,

Qр=11860кВАр.

На основе данного расчета, при проектировании на перспективу, по табл. 27.8 [1] наметим к установке на ГПП-33 два трансформатора типа ТРДН-40000/110 поскольку трансформаторы типа ТРДН-32000/110 сняты с производства.

Проверка на перегрузочную способность при установке на ГПП-33 двух трансформаторов.

- условие выполняется.


3.4. Расчет высоковольтных кабельных линий


Поверочный расчет производим для кабелей от ГПП-33 до РП-365.

Согласно ПУЭ [2], расчет производим по:

  1. экономической плотности тока

расчетный ток кабельной линии

, (3.4)

;

по условию прокладки кабеля и температуре О.С.

, (3.5)

где к12=1 – коэффициенты учитывающие условия прокладки кабеля (на эстакадах) и температуру О.С.=15о С.

, (3.6)

где jЭ=1,7А/мм2 – экономическая плотность тока при числе часов использования максимума нагрузки 3000-5000.

;

по табл. 4.14. [3] выбираем кабель марки ААБГ- 3х240.

  1. по допустимому току нагрева

условие: IрAДОП

,

где S’р – расчетная мощность в аварийном режиме

;

с учетом этого по табл. 4.14. [3] выбираем кабель марки ААБГ – 3(3х240).

  1. проверочный расчет на термическую стойкость

, (3.7.)

где I – установившийся ток К.З., tФ – приведенное время установившегося тока К.З., к – температурный коэффициент =75А*с0,5/мм2

расчетное значение тока К.З. приведено ниже

;

4) Согласно ПУЭ [2] проверку кабельных линий по допустимому падению напряжения не производим.

Расчет кабельной линии от ГПП-33 до РП-363 сводим в таблицу.


Таблица 3.2.

Выбор кабельной линии.


Марка кабеля

Iдоп., А

Iрасч., А

Iрасч.А, А

Sтермич.стоик., мм2

ААБлГ-4(3х185)

1000

528

705

63


3.5. Расчет токов короткого замыкания


Составим схему замещения ГПП-33, РП-363 и РП-365 принимая

Расчет ведем по методу расчетных кривых для турбогенераторов по общему изменению.

базисный ток

;

расчетные сопротивления элементов схемы замещения:

воздушная линия l=1,5км

сечение ВЛ

;

где - экономическое сечение при числе часов максимального использования 5000.

;

;

трансформатор

;

при S1000кВА активное сопротивление не учитываем

кабель ААБлГ-4(3х185), l=335м от ГПП-33 до РП-363

;

;

кабель ААШВУ-3х150, l=25м от РП-363 до 9РПП6 яч.№2

;

;

кабель ААБлГ-4(3х185), l=707м от ГПП-33 до РП-365

;

;

реактор РБ-10-630-0,56

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К1

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К1

;

, 0,2550,26; активное сопротивление можно не учитывать

расчетное сопротивление до точки К1

, при Scис= периодическая составляющая является незатухающей

I0,1=I”=I;

ток трехфазного короткого замыкания

;

ударный ток короткого замыкания

при по кривым рис.6.2. [4] определяем Куд=1,6

;

мощность короткого замыкания

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К3

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К3

;

, 0,285<0,2853; активное сопротивление можно не учитывать

расчетное сопротивление до точки К3

,

ток трехфазного короткого замыкания

;

ударный ток короткого замыкания

при по кривым рис.6.2. [4] определяем Куд=1,6

;

мощность короткого замыкания

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К2

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К2

;

, 0,2741,376; активное сопротивление можно не учитывать

при ток трехфазного короткого замыкания

;

ударный ток короткого замыкания

при по кривым рис.6.2. [4] определяем Куд=1,8

;

мощность короткого замыкания

;

суммарное приведенное индуктивное сопротивление от источника питания до точки КЗ К4

;

суммарное приведенное активное сопротивление от источника питания до точки КЗ К4

;

, 0,2690,275; активное сопротивление можно не учитывать

при Sсис= ток трехфазного короткого замыкания

;

подпитка места КЗ от СД

Iном.СД=;


IК=4831+4*147=5419А

ударный ток короткого замыкания

при по кривым рис.6.2. [4] определяем Куд=1,6

;

мощность короткого замыкания

;

На основании сделанных расчетов можно отказаться от установки реакторов на ГПП-33, что приведет к некоторому увеличению мощности КЗ, но находится в пределах термической и динамической стойкости коммутационной аппаратуры.


4. Автоматизированный электропривод горных машин и установок


Скиповые подъемные машины рудника «Таймырский» размещены в башенном копре и предназначены для выдачи руды с горизонта 1150м. (для северной ветви) – 1345м. (для южной ветви).

Основное требование к системе автоматического управления подъемной установкой – точное выполнение заданной диаграммы скорости вне зависимости от загрузки подъемных сосудов и других внешних факторов, влияющих на нагрузку приводного двигателя подъемной установки.

Системы автоматического управления грузовых и грузолюдских подъемных установок должны отвечать требованиям экономичности, обеспечивать надежность и безопасность работы подъема во всех режимах, а именно:

  • малую скорость при снятии подъемных сосудов с брусьев

  • реализацию заданных законов в период разгона, торможения и дотягивания, исключающих появление ускорений и замедлений, превышающих предельно допустимые значения, устанавливаемые из условий исключения проскальзывания канатов по шкиву трения и возникновения недопустимых динамических нагрузок.

  • отключение электропривода и включение рабочего тормоза при стопорении с контролем положения сосудов при загрузке и разгрузке.

  • контроль работы загрузочно-разгрузочных устройств и состояния технологического оборудования подъемной установки.

  • контроль отклонения скорости и включения защитных устройств при привешениях скоростью допустимых значений.

  • защиты от переподъемов, нулевую и максимальную защиты.

  • предусматривать остановку сосудов в промежуточных точках ствола.

световую сигнализацию о режимах работы подъемной установки в здании подъемной машины, у оператора загрузочного устройства, у диспетчера.

Современные регулируемые электроприводы постоянного тока для автоматизированных подъемных установок выполняют на основе двигателей постоянного тока с независимым возбуж­дением.

Поскольку регулирование скорости осуществляется за счет изменения напряжения, подводимого к якорю двигателя, то в качестве преобразователя напряжения постоянного тока наибо­лее перспективны тиристорные управляемые выпрямители, кото­рые могут подключаться непосредственно к якорной обмотке приводного двигателя либо к обмотке возбуждения генератора постоянного тока, питающего приводной двигатель.

Управление приводами с вентильными выпрямителями осу­ществляется с помощью электронных регуляторов, обладаю­щих большим быстродействием.

Разрабатываются и применяются унифицированные системы регулирования с последовательной коррекцией, выполняемой активными звеньями, построенными на операционных усилите­лях постоянного тока (с коэффициентами усиления в разомкну­том состоянии не менее 104), имеющих следующие преимущест­ва:

- реализацию с высокой точностью желаемых передаточных функций,

- малую мощность управления усилителей, что позво­ляет применять датчики и задатчики параметров с очень малой выходной мощностью;

- легкость и простоту наладки систем уп­равления электроприводами.

Построение систем управления на базе использования усилителей обеспечивает возможность широкой унификации схем и конструкций элементов, в том числе различного рода функциональных и других аналоговых устройств, предназ­наченных не только для автоматизации электроприводов, но и для решения задач автоматизации технологических процессов.


4.1.Обоснование принятого способа и аппаратуры автоматизации


Поскольку для подъемных установок накладываются ограничения по скорости и ускорению, вызванные требованием снижения динамических нагрузок в канатах и обеспечением комфорта при перевозке людей, то не требуется быстрого изменения величины и знака электромагнитного момента двигателя. Нет также необходимости в быстром реверсе скорости в технологических и аварийных режимах. Реверс скорости производится только из состояния покоя после остановки электродвигателя. Поэтому оказывается желательным и возможным применение для шахтных подъемных машин привода по системе ТП—Д с нереверсивным силовым ТП и реверсивным ТВ. Такой привод является экономичным и надежным, может обеспечивать требуемую плавность изменения скорости, ускорения и момента двигателя.

Преимущества систем подчиненного управления применительно к приводам подъемных машин.

Реализация систем подчиненного управления как многократно интегрирующих позволяет обеспечить минимальные ошибки регулирования по управлению и нагрузке. В таких системах статическая ошибка равна нулю при изменении в широких пределах статической нагрузки подъемных установок, весьма малыми оказываются динамические ошибки регулирования. На основе построения САУ как многократно интегрирующей с астатизмом второго порядка обеспечивается удовлетворение технологических требований по точности и быстродействию подъемных установок всех типов и исполнении.

Уменьшение времени цикла и повышение производительности подъемной установки обеспечивается:

- гарантированной линейностью изменения скорости; уменьшением периода трогания машин;

- четкостью повторения заданной диаграммы скорости при оптимальном использовании перегрузочной способности двигателя; большой точностью поддержания максимальной скорости, а также сниженной скоростью дотягивания;

- повышением точности остановки машины и подъемных сосудов в конце пути; исключением пауз для маневров при, ручном управлении и неточной остановке

Применением систем подчиненного управления достигаются:

- достаточная точность задания скорости и высокая точность регулирования скорости и отработки заданной диаграммы;

- стабильность программы скорости с помощью задатчика интенсивности, заменяющего программно-профильное устройство, практическое исключение разрегулирования устройства задания скорости, исключение необходимости его подстройки и возможности неквалифицированного вмешательства для изменения заданной программы движения;

- повышение безопасности эксплуатации подъемной установки;

- после аварийной остановки подъемной машины, когда участок пути от места остановки до точки нормального замедления оказывается меньше пути разгона, дальнейший разгон ограничивается точкой нормального замедления; после аварийной остановки машины на пути замедления продолжение движения возможно только на сниженной скорости дотягивания;

- линейность изменения заданной и действительной скорости;

- замена линии рыскания прямолинейным изменением скорости повышает к. п. д. установки, уменьшает эффективную мощность двигателя и расход электроэнергии;

- возможность ограничения пусковой мощности привода и улучшения работы высоковольтной сети;

- более высокие показатели формирования диаграммы движения;

стабильность скорости, ускорения, скорости нарастания тока якорной цепи привода, рывка, ограничение предельного тока; ограничение параметров диаграммы движения при пуске с середины ствола после аварийной остановки подъемной машины.

Применение систем подчиненного управления позволяет получить оптимальные диаграммы по нагрузкам на кинематические звенья подъемной установки (на машину и подъемные канаты). При этом увеличивается надежность машины за счет улучшения динамических свойств привода, снижается темп усталостного износа, повышается срок службы оборудования. При улучшении режима работы оборудования уменьшаются затраты и время ухода за оборудованием.

При автоматическом выполнении цикла подъема существенно улучшается работа подъемной установки, так как выбор оптимальной диаграммы скорости осуществляется применением электронного программного устройства — задатчика интенсивности и САУ — УБСР.

Принцип подчиненного регулирования заключается в том, что выходное напряжение регулятора является входным сигналом для следующего внутреннего контура управления. Характер переходного процесса в системе определяется типами звеньев в системы.

Задача всех регуляторов сводится к формированию определенного переходного процесса. Каждый регулятор должен произвести компенсацию максимальной постоянной времени, которая входит в данный контур регулирования. Так как на практике невозможно абсолютно компенсировать постоянную времени, то система настраивается на определенный оптимум.

Настройка системы заключается в обеспечении минимального времени регулирования и не превышения величиной перерегулирования допустимого критического значения. Это означает, что передаточная функция замкнутой системы состоящая из двух звеньев оптимизируется к следующей передаточной функции:

, (4.1)

где отношение постоянных времени T2/T1=m=2 – условие настройки на технический оптимум.


Регулирование тока якорной цепи.

Согласно общему методу синтеза систем подчиненного регулирования расчет параметров систем подчиненного регулирования производят путем последовательной оптимизации отдельных контуров регулирования, заключающейся в приведении передаточной функции замкнутого контура в соответствии с поставленными требованиями.

В системе регулирования скорости соподчиненным является контур регулирования тока якорной цепи. Общепринятый принцип оптимизации из условия технического оптимума базируется на упрощенной структурной схеме двигателя постоянного тока, не учитывающей обратной связи по э.д.с., на постоянстве параметров и линейности характеристик элементов, входящих в контур регулирования тока.

Объектом регулирования для контура тока является тиристорный преобразователь и ДПТ-НВ, передаточная функция которых:

; (4.2)

где КТП – коэффициент усиления ТП,

КТ – коэффициент обратной связи по э.д.с.,

R – сопротивление якорной цепи,

T - постоянная времени ТП,

TЯ – постоянная времени якорной цепи.

При T  TЯ внутреннюю обратную связь по э.д.с. не учитывают.

Передаточная функция замкнутого контура тока:

; (4.3)

По условию технического оптимума принимается T1= T и аТ=2 – коэффициент демпфирования.

При этом обеспечивается оптимальное качество регулирования в смысле минимума перерегулирования при высоком быстродействии, но не учитывается скорость нарастания тока якорной цепи, которая регламентируется рядом технологических условий работы электропривода подъема.

Одно из требований к системе регулирования тока – необходимость ограничения скорости нарастания тока якорной цепи. Для этого используют двухконтурную систему регулирования тока якорной цепи с дополнительным контуром ограничения его производной. При этом настройка внутреннего контура (значение аТ) определяется уже не требованиями ограничения diЯ/dt, а из условия согласования работы внутреннего и внешнего контуров, что достигается при выполнении неравенства

tР.ВН  tР.ВШ

в котором время регулирования внешнего контура превышает время регулирования внутреннего.

На основании этого можно записать:

; (4.4)

где T - эквивалентная некомпенсируемая постоянная контура тока.


Регулирование скорости.

При синтезе контура регулирования скорости необходимо учитывать, что САУ должна быть двукратноинтегрирующей и обеспечивать требуемую точность отработки заданной диаграммы скорости.

Задача синтеза контура регулирования скорости – определение оптимальных его параметров, т.е. коэффициентов аС и bС из условия обеспечения требуемого быстродействия при заданных параметрах внутреннего контура регулирования тока.

Передаточная функция замкнутой САУ скоростью имеет вид:

; (4.5)

Для определения желаемой передаточной функции задаются масштабом времени:

Z = tрег / tн

Где tн – нормированное время переходного процесса, вычисляемое по нормированным переходным функциям:

tрег = 5vmax/amax

Здесь tрег – время регулирования, определяемое по величине допустимой динамической ошибки , максимальной скорости движения подъемных сосудов vmax, максимальному ускорению в период разгона и замедления аmax.

Подбирая параметры системы аТ и Z добиваются удовлетворительного качества регулирования при малых значениях аТ и больших значениях Z. При увеличении аТ и уменьшении Z увеличиваются перерегулирование и колебательность процесса.

Особенность статических систем автоматического регулирования координат электропривода — возникновение статической ошибки, характеризующей различие между заданным и действительным значениями регулируемого параметра в статически режимах . Применительно к системам автоматического регулирования электроприводом рудничных подъемных установок, под статическим режимом понимают режим движения с установившейся скоростью.

При этом статическую ошибку системы автоматического регулирования оценивают разностью между заданной и действительной скоростями движения, выраженными в абсолютных или относительных единицах:

= задан - действ ; =(задан - действ)/ б ,

где задан , действ , б — соответственно заданная, действительная и базовая скорости. За базовую скорость обычно принимают максимальную скорость движения подъемных сосудов.

Статическая ошибка — одна из количественных оценок качества процесса регулирования — зависит от управляющего и возмущающего воздействий, параметров электропривода и параметров системы автоматического регулирования. Возмущающее воздействий (в системе электропривода рудничных подъемных установок — статическое усилие, обусловленное разностью статических натяжений поднимающейся и опускающейся ветвей каната) в значительной степени изменяется в зависимости от типа и исполнения подъемной установки.


5. Автоматическое управление технологическими процессами, машинами и установками


5.1. Автоматизация производственных процессов


Проектами предусматриваются следующие решения по пусковым объектам:

По башенному копру и надшахтному зданию КС-3 и стволу:

- автоматизация калориферных установок I и II очереди

- автоматизация зумпфого водоотлива

- автоматизация системы пожаротушения

- автоматизация системы охлаждения подъемных машин

- автоматизация систем приточного воздухоснабжения в надшахтном здании.

По диспетчеризации рудника:

- телеизмерение текущее (ТИТ) и телеизмерение интегральное (ТИИ) параметров горячего водоснабжения, холодного водоснабжения, воздухоснабжения по площадкам вспомогательных стволов, вентиляционных стволов и по основной площадке.

По галереям и сетям АБК основной площадки:

- автоматизация контроля параметров узла ввода на горячей воде

По АБК на основной площадке:

- автоматизация приточных систем П1…П7

- автоматизация систем обеспыливания ОС1…ОС5

- автоматизация зумпфового водоотлива

- автоматизация контроля параметров узла ввода на горячей воде.

По турбокомпрессорной:

- автоматизация турбокомпрессора №12 (привязка аппратуры УКАС-АМ, поступающей комплектно с компрессором). Дополнительно выполнен вынос приборов контроля температуры масла, воды и подшипников турбокомпрессора №12 в операторскую с заменой прибора контроля температуры воды и масла с КСМ2 на УМС.

По ПДЦ на гор. –1100 м:

- автоматизация контроля уровней руды в рудоспусках

- автоматизация маслостанции дробилки

- автоматизация аспирационной установки.


5.2. Телемеханизация и диспетчеризация


Проектами предусматривается телемеханизация объектов поверхности (подстанции, вентиляторные, калориферные, пожбаки, подъёмные машины, сети ТВС) и подземной части рудника (подстанции, водоотливные установки, ШВД). Кроме того, выполнено размещение диспетчерского и телемеханического оборудования в диспетчерском пункте рудника на отм.+14.200 здания АБК на основной площадке.

Сбор и передача информации типа ТС-ТИТ-ТИИ-ТУ-СК осуществляется комплексом устройств отображения информации УОТИ с микропроцессором «Электроника-60». Информация диспетчеру и энергооператору может быть представлена помимо комплекса УОТИ.

Проектами предусматривается создание рабочих мест горного диспетчера, энергооператора, поста ликвидации аварий.

Средствами отображения информации являются щит горного диспетчера (ЩГД), щит ликвидации аварии (ЩЛА), щит энергооператора (ЩЭО), стол энергооператора.


5.3. Метаноконтроль


Контроль за состоянием рудничной атмосферы с помощью автоматических приборов предусматривается в камерных выработках гор. –1300 м и ПДЦ, в которых выполнена местная световая и звуковая сигнализация с отключением электроэнергии при предельно допустимой концентрации метана.

Сигнализация о наличии метана в околоствольных дворах ВС-5 и ВС-6 вентиляционно – закладочных горизонтов –950 м., -1000 м., и –1200 м. выведена диспетчеру на стойку СПИ-1. Кроме того, выполнена местная световая и звуковая сигнализация.


5.4. Связь и сигнализация


Объекты пускового комплекса оснащены следующими видами связи:

- общешахтной телефонной связью абонентов от АТС100/2000 рудника «Октябрьский»;

- диспетчерской телефонной связью с абонентами поверхности на базе коммутатора ПОС-90, установленного у горного диспетчера, и с абонентами в подземных выработках, на базе комплекса ДИСК-ШАТС;

- громкоговорящей поисково-распорядительной связью на объектах поверхности;

- громкоговорящей искробезопасной связью оповещения и аварийной сигнализацией подземных объектов на базе комплекса ДИСК-ШАТС;

- местной стволовой высокочастотной связью между машинистами подъёмов с рукоятчиками и стволовыми на базе аппаратуры систем «Сигнал-16» и «Сигнал-17»;

- телефонной связью диспетчера транспорта с абонентами горизонтов с помощью искробезопасной аппаратуры КДШ, высокочастотной связью с машинистами электровозов на базе аппаратуры ВГСТ-76;

- местной телефонной связью в стволах и на горизонтах отдельными цепочками на базе телефонных аппаратов системы МБ;

Производственные помещения и АБК оборудованы автоматической пожарной сигнализацией.


5.5. АСБ-ЧУС гор. –1300 м


Рабочей документацией предусматривается оборудование горизонта –1300 м устройствами автоматической светофорной блокировки (АСБ) и частотного управления стрелочными переводами (ЧУС) с использованием аппаратуры АБСС.1М и комплекса НЭРПА-1. В проекте также предусмотрены устройства автоматического управления сигнальными огнями и шлюзовыми дверями на соединительной выработке с ВС-6 с возможностью выдачи через систему телемеханики информации диспетчеру о положении дверей, занятости шлюза, а также приема сигналов управления дверями от диспетчера.

Автоматизация шлюзовых вентдверей выполнена на базе аппаратуры управления шлюзовыми устройствами АШУ.

Устройства АСБ запроектированы для кольцевой схемы откатки в установленном направлении движения составов с использованием одной рабочей частоты (1660 Гц) и учетом разработанных и утвержденных мероприятий по безопасному движению электровозного транспорта и выполнению маневровых работ.

Данным проектом предусмотрены 7 узлов АСБ и корректировка трех узлов, введенных в действие III пусковым комплексом рудника.

По согласованию с эксплуатацией рудника определены стрелочные переводы, оборудуемые устройствами частотного управления с движущегося электровоза и по схеме с местным управлением.

Проектом предусматривается также опережающая сигнализация «Берегись электровоза».

Размещение оборудования АСБ, ЧУС, АШУ производится в специальных нишах.

Места установки светофоров, сигнальных указателей, транспарантов «БЭ», датчиков АСБ и ЧУС уточняются при монтаже устройств.


6. Специальная часть


6.1. Сущность вопроса о нормировании качества электроэнергии на промышленных предприятиях


При известных экономических характеристиках потребителей и показателях воздействия параметров электроэнергии на режимы работы сетей и оборудования, с одной стороны, и известных стоимостях соответствующих технических средств повышения КЭ—с другой, теоретически можно для каждого потребителя определить оптимальные уровни параметров электроэнергии аналогично оптимальному значению реактивной мощности. Практическое же решение задач повышения качества электроэнергии таким путем наталкивается на трудности как информационного, так и организационного характера. Первые обусловлены необходимостью получе­ния специфической информации о параметрах электроэнергии, которая в настоящее время оперативно не регистрируется, вторыедвухсторонностыо проблемы электромагнитной совместимости: ужесточать ли требования к искажающим ЭП в части помех, вносимых ими в сеть, или снижать восприимчивость остальных ЭП к этим помехам. Оба пути требуют определенных затрат, и теоретически здесь также может быть найдено оптимальное решение.

Однако производить ЭП с различными характеристиками влияния на режим сети или с различной степенью восприимчивости, сообразуясь с конкретной электромагнитной обстановкой в тех или иных узлах системы, практически невозможно. Кроме того, электромагнитная обстановка с течением времени меняется, что при таком подходе потребует изменения характеристик ЭП. В отличие от потребления реактивной мощности, изменяющегося практически в однозначном направлении, значения параметров электроэнергии могут измениться в любую сторону. И, наконец, в настоящее время отсутствуют методы и средства (программы для ЭВМ), позволяющие определять эти оптимальные значения с точностью, достаточной для практических целей и оправдывающей столь сложную организацию работ. Поэтому принятый в настоящее время путь сохранения допустимой электромагнитной обстановки в сети состоит в нормировании предельных значений параметров электроэнергии. Параметры электроэнергии или их комбинации, на значения которых накладывают соответствующие ограничения (нормы), называют показателями электромагнитной совместимости оборудования.

Для обеспечения электромагнитной совместимости оборудования необходимо иметь комплекс взаимно согласованных норм, применяемых в различных сферах про­ектирования и эксплуатации сетей и ЭП:

1) нормы на предельные уровни искажений, вносимых в сеть отдельными ЭП. Эти нормы используют при конструировании ЭП, вносящих искажения в сеть;

2) нормы на предельные уровни искажений, вносимых в сеть энергосистемы потребителями энергии. Эти нормы относятся к границам раздела сетей и определяют характер мер, которые должен принять потребитель, имеющий различные искажающие ЭП, часть из которых, возможно, не оборудована специальными подавляющими устройствами, а искажения не оказывают влияния на работу ЭП данного потребителя. Эти нормы используют при проектировании или реконструкции сети потребителя с целью принятия централизованных мер по предотвращению выброса недопустимо больших искажений в питающую сеть. В условиях эксплуатации на этих нормах должна основываться система надбавок к тарифам на электроэнергию за внесение искажений, превышающих установленный уровень;

3) нормы на качество поставляемой энергии, представляющие собой условия, обеспечиваемые энергоснабжающими организациями на границе раздела сетей. В эксплуатации на этих нормах должна основываться система скидок с тарифов за поставку электроэнергии пониженного качества;

4) нормы на предельные уровни искажений на вводах ЭП, чувствительных к искажениям питающего напряжения, используемые при конструировании ЭП. На основании этих норм предусматривают мероприятия по защите ЭП от помех. Очевидно, что уровень искажений на вводах ЭП в общем случае не совпадает с их уровнем на границе раздела и может быть выше последнего из-за искажений, вносимых собственными ЭП. Кроме того, в условиях эксплуатации возможны случаи, когда в послеаварийных режимах энергия поставляется с пониженным качеством. Это приводит к снижению экономических показателей оборудования, но не должно приводить к выходу его из строя. Поэтому нормы искажений в расчете на которые должны конструироваться ЭП должны быть выше норм, предъявляемых к качеству электроэнергии в нормальных условиях электроснабжения.

Фактические режимы работы ЭП будут отличаться от тех, в расчете на которые они проектировались, вслед­ствие многообразия условий, в которых используются ЭП, и изменения во времени параметров электроэнергии на их вводах. Для некоторых типов ЭП воздействие параметров может проявляться в одной и той же форме (например, нагрева). При этом превышение одного из ПКЭ над нормированным значением может не вызвать необходимости применения каких-либо мер, если другие ПКЭ в это время находятся существенно ниже предель­ных значений. Для оценки допустимости режимов работы конкретного оборудования в конкретных условиях необходимо, с одной стороны, знать функцию совместного воздействия на характеристики оборудования всех ПКЭ, а с другой— уметь оценивать допустимость режима при случайном характере воздействующих факторов.

Разработка охарактеризованного выше комплекса норм еще не завершена. В настоящее время действует стандарт, устанавливающий нормы качества электроэнергии на вводах ЭП (ГОСТ 13109—67). Этот стандарт не укладывается в структуру норм, описанную выше, представляя собой нормы на качество электроэнергии, потребляемой непосредственно ЭП, т. е. нечто среднее между описанным в пп.З и 4, безотносительно к организационному механизму ответственности за несоблюдение норм. Несмотря на недостатки стандарта, его использование оказалось полезным в основном в связи с учетом его требований проектными организациями. В условиях же эксплуатации проверка соблюдения его требований практически не проводилась из-за отсутствия как средств измерения ПКЭ, так и организационного механизма контроля качества. Сказался и тот факт, что в ряде случаев ЭП функционируют нормально и при несоблюдении его требований.

ГОСТ 13109—67 устанавливает для трехфазных сетей переменного тока шесть ПКЭ: отклонение напряжения, отклонение частоты, размах колебаний напряжения, размах колебаний частоты, коэффициенты обратной последовательности и искажения синусоидальности напряжений.

Целью данной работы является рассмотрение последнего показателя (искажения синусоидальности).

Задача ограничения уровней гармоник в электрических сетях имеет два аспекта: технический и экономический.

Необходимость лимитировать допустимые величины гармоник определяется такими техническими требованиями, как исключение неуспешных коммутаций вентиль­ных преобразователей (в особенности это относится к реверсивным преобразователям, работающим и в выпрямительном, и в инвентарном режиме); предотвращение повреждений батарей конденсаторов и других аппаратов вследствие резонансных явлений на высших гармониках; обеспечение качественной работы устройств релейной защиты и измерительных приборов, систем автоматики, телемеханики и связи.

При наличии высших гармоник ухудшаются экономические показатели работы систем электроснабжения предприятий в результате возникновения добавочных потерь от гармоник и сокращения срока службы изоляции электрических машин, трансформаторов, батарей конденсаторов и силовых кабелей.;

В настоящее время в различных странах действуют национальные нормы, лимитирующие, как правило, уровень гармоник в кривых напряжений или токов. При составлении этих норм принимались во внимание исключительно технические соображения, так как, по мнению ряда зарубежных авторов, возможность расчета ущерба от действия гармоник весьма проблематична. В отдельных случаях энергетическими системами Западной Европы задаются максимально допустимые уровни отдельных гармоник напряжения, что необходимо для выбора силовых фильтров.

Международной электротехнической комиссией (МЭК) приняты нормы, согласно которым допускается мгновенное отклонение напряжения сети, т. е. разность ординат кривых результирующего напряжения и первой гармоники, на шинах преобразователя не более 5% амплитудного значения.


6.2. Сущность искажения синусоидальности кривых напряжений и токов


Искажения вызываются работой ЭП с нелинейной вольт-амперной характеристикой и регулируемых преобразователей переменного тока в постоянный. Кривые тока и напряжения в этих случаях приобретают вид, отличный с синусоиды. Пользуясь методом гармонических составляющих, можно исходную несинусоидальную кривую разложить на сумму синусоидальных с определенными значениями амплитуд гармоник их начальных углов.

Гармоники создают магнитные поля различных последовательностей. Так как кривые напряжений в каждой фазе сдвинуты между собой на 1/3 (или на полный период третьей гармоники), то третьи гармоники совпадают друг с другом по фазе и образуют нулевую последовательность. Аналогично ведут себя все гармоники, кратные трем. Поэтому токи гармоник, кратных трем, не могут существовать в трехфазной сети без нулевого провода или выйти за пределы обмоток, соединенных в треугольник. Порядок чередования фаз для гармоник =4, 7, 10, 13... ( -1 делится на 3) совпадает с прямым, а гармоник =2, 5, 8, 11,... (+1 делится на 3) — с обратным порядком.


6.3. Влияния высших гармоник на силовые установки


Высшие гармоники в системе электроснабжения промышленных предприятий, как уже отмечалось ранее, нежелательны по ряду причин: появляются дополнительные потери в электрических машинах, трансформаторах и сетях; затрудняется компенсация реактивной мощности с помощью батарей конденсаторов; сокращается срок службы изоляции электрических машин и аппаратов; ухудшается качество работы систем релейной защиты, автоматики, телемеханики и связи.

При работе асинхронного электродвигателя в условиях несинусоидального напряжения несколько снижаются его коэффициент мощности и вращающий момент на валу.

На практике искажение кривой напряжения мало влияет на коэффициент мощности двигателя; так, например, если амплитуды 5-й и 7-й гармоник напряжения составляют соответственно 20 и 15% амплитуды первой гармоники, то коэффициент мощности двигателя уменьшается на 2,6% в сравнении со значением его при синусоидальном напряжении. В условиях промышлен­ных предприятий искажения напряжения бывают меньшими, поэтому влияние высших гармоник на коэффициент мощности асинхронного электродвигателя можно не учитывать.

Моменты, развиваемые высшими гармониками тока, также составляют очень малую величину вращающего момента асинхронных и синхронных двигателей, определяемого первой гармоникой питающего напряжения. Так, для асинхронного двигателя средней мощности при удельном весе 5-й гармоники напряжения, равном 20% основной, момент, обусловленный 5-й гар­моникой, не превосходит 0,1% момента, развиваемого при промышленной частоте.


6.4. Влияние гармоник на изоляцию электроустановок


Искажение формы кривой напряжения оказывает существенное влияние на возникновение и протекание ионизационных процессов в изоляции электрических машин и трансформаторов.

При наличии газовых включений в изоляции в этих включениях возникает ионизация, сущность которой заключается в образовании объемных зарядов и последующей нейтрализации их. Нейтрализация заряда связана с рассеиванием энергии, следствием которого является электрическое, механическое и химическое воздействие на окружающий диэлектрик. В результате ионизационных процессов развиваются местные дефекты в изоляции, что приводит к снижению ее электрической прочности, возрастанию диэлектрических потерь и в конечном счете к сокращению срока службы.

Количество разрядов в газовых включениях зависит от формы кривой напряжения, приложенного к изоляции.

Подробные многолетние исследования форм кривых напряжения в сетях промышленных предприятий показывают, что в большинстве случаев за счет высших гармоник кривые напряжения принимают более заостренную форму в сравнении с синусоидой и поэтому наличие высших гармоник в этих сетях приводит к ускоренному старению изоляции электрических машин и трансформаторов.

При наличии гармоник в кривой напряжения процесс старения диэлектрика конденсаторов протекает также более интенсивно, чем в случае, когда конденсаторы работают при синусоидальном напряжении. Это объясняется тем, что физико-химические процессы в диэлектриках, обусловливающие старение их, значительно ускоряются при высоких частотах электрического поля. Аналогично влияет дополнительный нагрев, вызванный протеканием высших гармоник тока.

Таким образом, наличие высших гармоник в кривой напряжения, даже в допустимых пределах, приводит к значительной интенсификации процесса старения диэлектрика конденсаторов и как следствие сокращению срока службы их.

В соответствии с ГОСТ 1262-68 батареи конденсаторов могут длительно работать при перегрузке их токами высших гармоник не более чем на 30%; допустимое повышение напряжения лимитируется величиной 10%. Однако при длительной эксплуатации конденсаторов в этих условиях срок службы их сокращается. В условиях промышленных предприятий, как правило, конденсаторы периодически оказываются в режиме, близком к резонансу токов на частоте какой-либо из гармоник низкого порядка; вследствие систематических перегрузок они быстро выходят из строя. В настоящее время на многих крупных промышленных предприятиях, где имеются мощные вентильные преобразователи, батареи конденсаторов без применения специальных мер защиты их от высших гармоник, по существу, не работают. В результате снижается коэффициент мощности электроустановок цехов и производств, ухудшаются экономические показатели систем электроснабжения предприятий.

При несинусоидальном напряжении сети происходит ускоренное старение изоляции силовых кабелей. Для подтверждения этого положения были сопоставлены результаты замеров токов утечки кабелей, проложенных почти одновременно и работающих в сходных температурных условиях; часть обследованных кабелей работала при практически синусоидальном напряжении, другая при уровне гармоник в кривой напряжения в пределах 6—8,5% (преобладали 5-я и 7-я гармоники). Токи утечки во втором случае через 2,5 года эксплуатации оказались в среднем на 36% больше, через 3,5 года на 43%.


6.5. Влияние высших гармоник на системы автоматики


Воздействие высших гармоник на системы импульсно-фазового управления вентильными преобразователями может привести к воз-никновению так называемой гармонической неустойчивости. Явление гармонической неустойчивости состоит в появлении на шинах многофазного преобразователя большого напряжения четной гармоники или гармоники, кратной трем; при этом в кривой напряжения сети появляются также другие гармоники четных порядков и кратные трем, однако меньшие по величине. Искажения кривой напряжения сети могут быть столь большими, что в инверторном режиме преобразователя появятся нарушения коммутации; при этом работа системы импульсно-фазового управления также может оказаться неустойчивой.

Гармоническая неустойчивость может возникнуть при подключении преобразователя к электрической системе, мощность короткого замыкания которой соизмерима с мощностью преобразователя, в случае, если имеются другие источники гармоник (например, силовые трансформаторы). Основной причиной появления гармонической неустойчивости является асимметрия управляющих импульсов, неизбежная в реальных системах импульсно-фазового управления. Следствием этой асимметрии является появление в спектре тока преобразователя четных гармоник и гармоник, кратным трем; усиление их при наличии указанных выше условий и приводят к гармонической неустойчивости.

Повышение напряжения на частоте какой-либо гармоники существенно ограничивается при использовании заградительных фильтров в системах импульсно-фазового управления.

Возникновение гармонической неустойчивости исключается при соблюдении условия

, (6.1)

где xк сопротивление короткого замыкания питающей энергосистемы на шинах преобразователя; Idн номинальный выпрямленный ток преобразователя; Uлинейное напряжение сети.

Для преобразователей ПМ СС-3:

;

На входе систем импульсно-фазового управления подключаются фильтры, благодаря чему усиление четных гармоник и гармоник, кратных трем, практически не имеет места.

В некоторых энергосистемах были зафиксированы случаи неверной работы блокировок от качаний, причиной которых были высшие гармоники тока, в частности пятая гармоника. Наблюдались также случаи ложной работы устройств релейной защиты, в которых использовались фильтры токов обратной последовательности, из-за наличия токов высших гармоник, которые образуют систему обратной последовательности. Влияние высших гармоник на работу релейной защиты проявляется при уровне гармоник а токе нагрузки линии порядка 5—7%.

Высшие гармоники тока и напряжения в сети ухудшают работу телемеханических устройств и даже вызывают сбои, если силовые цепи используются в качестве каналов связи между полукомплектами диспетчерского и контролируемого пунктов. Затрудняется использование простой и дешевой системы циркуляторного телеуправления по линиям распределительных сетей с использованием четных гармоник.


6.6. Расчет компенсации реактивной мощности


Составим уравнение баланса реактивной мощности

, (6.2)

где - реактивная мощность подлежащая компенсации

- потери реактивной мощности

;

;

;

.

Дополнительные потери активной мощности в ВЛ от передачи реактивной

;


6.7. Расчет компенсации реактивной мощности с учетом подключения силовых резонансных фильтров


При комплексном подходе к решению проблемы качества электроэнергии в сетях с нелинейными нагрузками применим многофункциональные устройства - силовые резонансные фильтры (СРФ) высших гармоник, которые наряду со снижением уровней высших гармоник генерируют в питающую сеть реактивную мощность.

По номограммам рис.8.2.[2] определим возможность подключения вентильной нагрузки исходя из допустимого уровня коэффициента несинусоидальности.

Для подъемных машин СС-3:

;

Из данного соотношения следует, что при данной мощности нелинейной (вентильной) нагрузки в сеть будут выдаваться высшие гармоники недопустимого уровня и подключение батарей конденсаторов к шинам ГПП-33 приведет к выходу последних из строя.

Для более точных данных о значении коэффициента несинусоидальности воспользуемся данными из литературы [5].

Проведенное исследование показателей качества электрической энергии в узлах нагрузки с тиристорными преобразователями показало:


Таблица 6.1.

Показатели качества электрической энергии.


Коэфф.несинус.

с 0.00 до 8.00

с 8.00 до 16.00

с 16.00 до 24.00

Сред. за сутки

ПМ “Юг

4,175

3,35

8,425

5,325

ПМ “Север

11,85

10,8

19,3

14


На обеих подъемных машинах Кнс>5%.

Наметим к установке СРФ на каждую подъемную машину.

Для подъемных машин КС-3:

;

По номограммам рис.8.2.[4] определить возможность подключения вентильной нагрузки исходя из допустимого уровня коэффициента несинусоидальности затруднительно, т.к. полученная точка находится на границе зоны недопустимости установки БК.

Для более точной оценки воспользуемся формулой:

, (6.3)

где , (6.4)

Кр=4 при двенадцати пульсной схеме выпрямления

Кр=0 при шести пульсной схеме выпрямления

Для большой подьемной машины:

;

%.

Для малой подьемной машины:

;

%.

СС-3:

Реактивная нагрузка группы преобразователей

;

Допустимое значение реактивной нагрузки группы преобразователей

;

Реактивная мощность группы преобразователей подлежащая компенсации

;


6.8. Расчет силовых резонансных фильтров


Существующая практика применения резонансных фильтров основывается на использовании комплекта фильтров, настроенных по возможности точно на частоты гармоник, преобладающих в амплитудном спектре токов нелинейных нагрузок. Такой подход определялся, главным образом, стремлением снизить уровень гармоник в сети до минимального значения (теоретически до нуля). Применение фильтров малой и средней мощности (с отношением мощности батарей фильтра Qр к мощности короткого замыкания сети Sкз порядка Кр = Qр/Sкз< 0,01) обусловливало повышенные требования к точности настройки с целью избежать усиление отдельных гармоник напряжения в сети, перегрузки фильтров и других неблагоприятных явлений.

Возрастание удельного веса нелинейных нагрузок, имеющих низкий коэффициент мощности, привело к необходимости применять в составе фильтров батареи конденсаторов весьма большой мощности (Кр >0,015), что позволило значительно снизить требования к точности настройки фильтров. Следует также отметить, что ущерб, обусловленный высшими гармониками тока и напряжения в сети максимален при значительных величинах напряжения гармоник и уменьшается в квадратичной зависимости. Поэтому необходимость полного снижения уровней гармоник на основе экономических соображений, практически отсутствует; достаточно снизить их до предела, определяемого техническими требованиями, например, до значения коэффициента несинусоидальности 5%, допустимого согласно ГОСТ 13109-67. При таком подходе в рассматриваемом случае (Кр>0,015 ) отпадает необходимость устанавливать большое число фильтров.

Действующее значение основной и высших гармоник

;

где  - порядковый номер гармоники

;

;

;

;

Реактивная мощность преобразователя подлежащая компенсации

Q=7,43/2=3,715МВАр;

По табл.16-19 [6] выбираем конденсатор:

тип КС2-6,3-100-2УЗ

емкость С=8,03мкФ; цена Ц=2,15у.е./кВАр.

Вариант распределения реактивной мощности между фильтрами

Ф11 Q=1,5МВАр – 5 параллельно включенных конденсаторов в каждой фазе

Ф13 Q=1,5МВАр – 5 параллельно включенных конденсаторов в каждой фазе

Ф23 Q=0,9МВАр – 3 параллельно включенных конденсаторов в каждой фазе

Фильтр 25 гармоники не устанавливаем, т.к. имеем перекомпенсацию реактивной мощности.

Рассмотрим необходимость установки Ф23 гармоники с точки зрения обоснования точности настройки СРФ.

Ф11 ;

Ф13 ;

Ф23 ;

Т.к. , то снижать требования к точности настройки СРФ нельзя и необходимо использовать все 3 СРФ.

;


6.9. Анормальные гармоники, генерируемые вентильными преобразователями


При симметрии управляющих импульсов систем импульсно-фазового управления вентильные преобразователи являются источниками нечетных высших гармоник тока, которые могут быть найдены по соответствующим формулам или кривым. При гармоническом анализе кривых линейных токов управляемых преобразователей в ряде случаев имеет место асимметрия управляющих импульсов; углы управления  по отдельным каналам системы управления могут отличаться друг от друга и от установочного значения  на величину ошибки.

Наличие ошибок углов управления в статическом режиме работы преобразователя обусловливается разбросом параметров элементов, из которых собраны устройства импульсно-фазового управления, а также несовершенством частотных фильтров на входе этих устройств; последнее существенно при питании их от сети с несинусоидальным напряжением. Появление значительных ошибок возможно также при некачественной настройке систем импульсно-фазового управления. При 6-фаз-ной схеме в спектре тока преобразователя содержатся как гармоники канонических порядков (=5; 7; 11;13 ), так и неканонические, или анормальные гармоники (=2; 3; 4; 6; 8; 9; 10...).

Распределение ошибок углов зажигания управляемых вентилей подчиняется нормальному закону. Это объясняется в первую очередь тем, что на величину ошибки влияет большое число независимых случайных факторов.

Величины анормальных гармоник тока, генерируемых вентильными преобразователями, очень малы; они не могут создать значительных гармоник напряжения в питающей сети.


6.10. Параметры силовых фильтров


Цепи фильтров включаются в звезду с изолированной нейтралью, соединение в треугольник не применяется из опасения, что перекрытие изоляции одной фазы конденсаторов, приводящее к междуфазному замыканию, может вызвать большие повреждения фильтров. К нулевой точке в большинстве случаев подключаются реакторы; при этом корпусная изоляция конденсаторов имеет напряжение относительно земли на несколько процентов меньше, чем в случае, когда к нулевой точке подключены, конденсаторы; это соображение считается существенным и такое включение является рекомендуемым.

В соответствии с техническими условиями эксплуатации батарей конденсаторов, принятыми в большинстве европейских стран, длительно допустимые превышения напряжения и тока сверх номинальных значений лимитируются некоторыми величинами соответственно Си и Ci (в долях от номинальных значений). Согласно ГОСТ1282-68 Си ==1,1 и Сi ==1,3; длительные перегрузки конденсаторов приводят к сокращению срока службы их.

Для конденсаторов, работающих в схемах силовых фильтров, стремятся не допускать превышения напряжения в сравнении с номинальным значением (Сu=1) Фазное напряжение промышленной частоты на зажимах батареи конденсаторов фильтра определяется по формуле

, (6.5)

где Unфазное напряжение промышленной частоты на шинах подстанции.

, (6.6)

Коэффициент характеризует степень увеличения напряжения на батарее, в сравнении с напряжением на шинах за счет последовательного включения реактора.

;

;

;

Напряжение -й гармоники на конденсаторах при соединении в звезду

, (6.7)

где Iб ток -й гармоники, протекающий в батарее кон­денсаторов; емкостное сопротивление ее при промышленной частоте.

;

;

;

Номинальный ток батареи конденсаторов:

, (6.8)

Ф11 ;

Ф13 ;

Ф23 ;

Проверка выбранных батарей конденсаторов производиться по условию допустимой перегрузки по напряжению:

, (6.9)

где ;

Ф11 ;

Ф13 ;

Ф23 ;

Проверка выбранных батарей конденсаторов по условию допустимой перегрузки по току:

, (6.10)

Учитывая возможность проникновения в фильтр других гармоник помимо той, на которую он настроен, целесообразно выбрать коэффициент Сi с некоторым запасом; окончательно второе условие для выбора батарей фильтров представим в виде

, (6.11)

Ф11 , - условие не выполняется.

В реальных условиях необходимо принимать во внимание отклонения емкости от номинальных значений. Данное отклонение рассмотрим ниже.

Ф13 , - условие выполняется;

Ф23 , - условие выполняется;

Выбор реактора производим по уравнению идеального резонанса. При идеальной настройке в резонанс и номинальных значениях индуктивности Lном и емкости Сном справедливо следующее соотношение:

, (6.12)

, (6.13)

Ф11 ;

Ф13 ;

Ф23 ;

По табл.4-30 [3] выбираем:

Ф11 тип РБА-6-200-4

;

Р=5,1кВт на фазу, Ц=1720у.е.

По табл.16-38 [6] выбираем:

Ф13 тип РБАС-6-2х1000-4

;

Р=8,5кВт на фазу

По табл.16-38 [6] выбираем:

Ф23 тип РБАС-6-2х600-4

- одной ветви

Р=7,5кВт на фазу

Отклонения индуктивности и емкости от номинальных значений.

Индуктивность L имеет отклонение, обусловленное несовершенством технологии изготовления реакторов:

; (6.14)

где относительное отклонение индуктивности от номинального значения .

Согласно ГОСТ 1479-69 допускается относительное отклонение индуктивности в пределах 0—15%.

В реальных условиях вследствие изменения геометрических размеров реактора в зависимости от температуры нагрева индуктивность его несколько возрастает с температурой; однако это изменение незначительно и им можно пренебречь.

Емкость батарей конденсаторов С также имеет отклонение С от номинального значения, обусловленное в первую очередь разной толщиной бумаги, пропитываемой синтетическими жидкостями:

, (6.15)

где относительное отклонение емкости от номинального значения .

Согласно ГОСТ 1282-68 допускается относительное отклонение емкости конденсаторов в пределах -5 +10%.

Зависимость емкости батареи конденсаторов Сt от температуры нагрева определяется известным соотношением

, (6.16)

Здесь Со - величина емкости при температуре 20 °С;

t = t °-20°; температурный коэффициент емкости;

для конденсаторов с пропиткой синтетическими жидкостями он равен -4—8•10-4 1/°С.

Таким образом, выражение для емкости конденсаторов одной фазы фильтра можно представить в виде

, (6.17)

С учетом выше изложенного, сделаем перерасчет для фильтра 11 гармоники по допустимой перегрузки по току.

;

;

Ф11 , 1,141,12 – превышение допустимого тока на 1,7%.

Индуктивное и емкостное сопротивления фильтра изменяются с изменением частоты питающей сети. Обозначив через  отклонение частоты от номинального значения , можем записать:

, (6.18)

где относительное отклонение частот от номинального значения .

Абсолютная величина реактивного сопротивления фильтра гармоники Xф при расстройке резонансного контура вследствие отклонений индуктивности и емкости от номинальных значений представляется выражением

, (6.19)

Реальные значения и пределы изменения величин, входящих в формулу, следующие:

t=0—60°С; = -0,02 -0,01.

Ф11 ;

=

= -83Ом – отклонение носит емкостной характер.

Ф13 ;

=

= -70Ом – отклонение носит емкостной характер.

Ф23 ,

=

= -12Ом – отклонение носит емкостной характер.

Относительное отклонение реактивного сопротивления фильтра от величины емкостного сопротивления при идеальной резонансной настройке выражается формулой

, (6.20)

Ф11 ;

Ф13 ;

Ф23 ;

это коэффициент, характеризующий расстройку фильтра в зависимости от возможных отклонений индуктивности и емкости, обусловленных технологическими и эксплуатационными условиями. Требуется, чтобы 0,1, таким образом, возможная расстройка может достигать двух порядков.

Оценим величину относительного отклонения реактивного сопротивления фильтра на нерезонансных частотах в частности на частоте =13. Реактивное сопротивление фильтра на частоте гармоники порядка :

, (6.21)

;

- отклонение реактивного сопротивления фильтра на нерезонансных частотах можно не учитывать.


6.11. Особенности работы силового фильтра при отклонениях от резонансной настройки


Идеальный фильтр гармоники полностью потребляет ток этой гармоники I, генерируемый нелинейными нагрузками в питающую сеть. При конечных значениях активного и реактивного сопротивлений фильтра потребляемый им ток может быть больше или меньше тока гармоники, генерируемого всеми источниками.

Обозначим коэффициентом загрузки фильтра -й гармоники током этой гармоники или, для краткости, коэффициентом загрузки по току.

, (6.22)

где , (6.23)


Случайные файлы

Файл
187127.rtf
71833.rtf
28779.rtf
73348.rtf
152916.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.