Вступ 2

Розділ 1. Електрофізичні властивості напівпровідників 3

1.1 Власні й домішкові напівпровідники 3

1.2. Енергетичні діаграми напівпровідників 6

1.3 Силові діоди. 11

Розділ 2. Загальні відомості про напівпровідникові розмикачі струму. 13

Розділ 3. Основні типи напівпровідникових розмикачів струму. 18

3.1. Дрейфовий діод з різким відновленням. 18

3.2. SOS-діоди. 25

3.3. Розмикачі струму на основі карбіду кремнію. 30

Розділ 4. Промислові генератори імпульсів на основі ДДРВ й SOS-діодів. 32

Висновок. 35

Список використаної літератури. 41

Вступ


Для проведення досліджень в експериментальній фізиці широко використовують імпульсні джерела живлення для потужніх лазерів, прискорювачів заряджених частинок, рентгенівських апаратів. Але для створення таких імпульсних джерел живлення потрібно мати потужні перемикаючі пристрої, які б перемикали, із достатньо високою швидкістю джерела живлення із режиму накопичення енергії в режими розряду та навпаки. Такі перемикаючі пристрої повинні витримувати напруги порядку 103 - 106 В та струми густиною 102 - 105 А/см2 та мати можливість генерувати імпульси із частотою 104 Гц і вище. Таким параметрам відповідають певні типи напівпровідникових діодів.

У роботі розглянуто напівпровідникові діодні перемикачі струму для потужньої наносекундної імпульсної техніки. Особливу увагу приділено дрейфовим діодам із різким відновленням ДДРВ та SOS – діодам. Перший тип діодів був запропонований і розроблений у Фізико-технічному інституті ім. А. Ф. Іоффе РАН, другий в Інституті електрофізики УрВ РАН. За допомогою ДДРВ вдається перемикати потужність до сотень мегаватів за наносекунду при щільності струму порядку 102 А/см2. SOS – діоди дозволяють перемикати потужності в кілька гігават за такі ж короткі часи при щільності струму більше 103 А/см2. Ще одною позитивною рисою таких напівпровідникових пристроїв є їх великий строк роботи.

Розробка генераторів потужних наносекундних імпульсів та напівпровідникових перемикачів струму сприятиме розвитку робіт з релятивістської надвисокочастотної електроніки, широкополосної радіолокації, систем живлення лазерів, прискорювачів електронів.

Розділ 1. Електрофізичні властивості напівпровідників


Напівпровідниками є речовини, що займають по величині питомої провідності проміжне положення між провідниками й діелектриками [1,2,3]. Ці речовини володіють як властивостями провідника, так і властивостями діелектрика. Разом з тим вони володіють рядом специфічних властивостей, що різко відрізняють їх від провідників і діелектриків, основним з яких є сильна залежність питомої провідності від впливу зовнішніх факторів (температури, світла, електричного поля і т. п.). До напівпровідників відносяться елементи четвертої групи періодичної таблиці Д. І. Менделєєва, а також хімічні сполуки елементів третьої й п'ятої груп типу AIII BV (GaAs, InSb) і другої й шостої груп типу AII B VI (Cd, B, CdFe). Провідне місце серед напівпровідникових матеріалів, які використовуються у напівпровідниковій електроніці, займають кремній, германій й арсенід галію GaAs. Хоча у наш час у наукових установах ведеться пошук нових напівпровідникових матеріалів, розробляються органічні напівпровідники.


1.1 Власні й домішкові напівпровідники


Власними напівпровідниками або напівпровідниками типу i (від англійського intrinsic - власний) називаються чисті напівпровідники, що не містять домішок. Домішковими напівпровідникам називаються напівпровідники, що містять домішки, валентність яких відрізняється від валентності основних атомів. Вони підрозділяються на електронні й діркові. Власні напівпровідники мають кристалічну структуру, що характеризується періодичним розташуванням атомів у вузлах просторової кристалічної решітки. У такій решітці кожен атом взаємно пов'язаний із чотирма сусідніми атомами ковалентними зв'язками (мал. 1.1), у результаті яких відбувається усуспільнення валентних електронів й утворення стійких електронних оболонок, що складаються з восьми електронів. При температурі абсолютного нуля (T=0°K) всі валентні електрони перебувають у ковалентних зв'язках, отже, вільні носії заряду відсутні, і напівпровідник подібний до діелектрика[2,3]. При підвищенні температури або при опроміненні напівпровідника світловою енергією, рентгенівським випромінюванням валентний електрон може вийти з ковалентного зв'язку й стати вільним носієм електричного заряду. При цьому ковалентний зв'язок стає дефектним, у ньому утвориться вільне (вакантне) місце, що може зайняти один з валентних електронів сусіднього зв'язку, у результаті чого вакантне місце переміститься до іншої пари атомів. Переміщення вакантного місця усередині кристалічної решітки можна розглядати як переміщення деякого фіктивного (віртуального) позитивного заряду, величина якого дорівнює заряду електрона. Такий позитивний заряд прийнято називати діркою.

Процес виникнення вільних електронів і дірок, обумовлений розривом ковалентних зв'язків, називається тепловою генерацією носіїв заряду. Його характеризують швидкістю генерації G, що визначає кількість пар носіїв заряду, що виникають в одиницю часу в одиниці об'єму напівпровідника. Швидкість генерації тим більше, чим вище температура й чим менша енергія, яка затрачується на розрив ковалентних зв'язків. Утворені в результаті генерації електрони й дірки, перебуваючи в стані хаотичного теплового руху, через деякий час, середнє значення якого називається часом життя носіїв заряду, зустрічаються один з одним, у результаті чого відбувається відновлення ковалентних зв'язків. Цей процес називається рекомбінацією носіїв заряду й характеризується швидкістю рекомбінації R, що визначає кількість пар носіїв заряду, що зникають в одиницю часу в одиниці об'єму. Добуток швидкості генерації на час життя носіїв заряду визначає їхню концентрацію, тобто кількість електронів і дірок в одиниці об'єму. При незмінній температурі генераційно – рекомбінаційні процеси перебувають у динамічній рівновазі, тобто в одиницю часу народжується й зникає однакова кількість носіїв заряду (R=G). Ця умова називається законом рівноваги мас. Стан напівпровідника, коли R=G, називається рівноважним; у цьому стані у власному напівпровіднику встановлюються рівноважні концентрації електронів і дірок, які позначають ni й pi . Оскільки електрони й дірки генеруються парами, то виконується умова: ni=pi . При цьому напівпровідник залишається електрично нейтральним, тому що сумарний негативний заряд електронів компенсується сумарним позитивним зарядом дірок. Ця умова називається законом нейтральності заряду. Для знаходження концентрації носіїв струму запропонована формула:


(1.1)


При кімнатній температурі в кремнії ni=pi=1,4·1010 см-3, а в германії ni=pi=2,5·1013 см-3. Різниця в концентраціях пояснюється тим, що для розриву ковалентних зв’язків в кремнію потрібно більше витратити енергії, чим в германію. Із ростом температури, концентрація електронів та дірок зростає по експоненційному закону, що видно із (1.1.)

Електронним напівпровідником або напівпровідником типу n ( від латинського negative - негативний) називається напівпровідник, у кристалічній решітці якого крім основних (чотирьохвалентних) атомів утримуються домішкові п’ятивалентні атоми, які називають донорами. У такій кристалічній решітці чотири валентних електрони домішкового атома зайняті в ковалентних зв'язках, а п'ятий (“зайвий”) електрон не може вступити в нормальний ковалентний зв'язок і легко відокремлюється від домішкового атома, стаючи вільним носієм заряду. При цьому домішковий атом перетворюється в позитивний іон. При кімнатній температурі практично всі домішкові атоми виявляються іонізованими. Поряд з іонізацією домішкових атомів в електронному напівпровіднику відбувається теплова генерація, у результаті якої утворюються вільні електрони й дірки, однак концентрація виникаючих у результаті генерації електронів і дірок значно менша за концентрацію вільних електронів, що утворяться при іонізації домішкових атомів, тому що енергія, необхідна для розриву ковалентних зв'язків, істотно більша енергії, затрачуваної на іонізацію домішкових атомів. Концентрація електронів в електронному напівпровіднику позначається nn, а концентрація дірок - pn. Електрони в цьому випадку є основними носіями заряду, а дірки - неосновними.

Дірковим напівпровідником або напівпровідником типу p ( від латинського positive - позитивний) називається напівпровідник, у кристалічній решітці якого (рис. 1.4) утримуються домішкові тривалентні атоми, які називають акцепторами. У такій кристалічній решітці один з ковалентних зв'язків залишається незаповненим. Вільний зв'язок домішкового атома може заповнити електрон, що покинув один із сусідніх зв'язків. При цьому домішковий атом перетворюється в негативний іон, а на тому місці, звідки пішов електрон, виникає дірка. У дірковому напівпровіднику, також як й в електронному, відбувається теплова генерація носіїв заряду, але їхня концентрація в багато разів менша за концентрацію дірок, що утворюються в результаті іонізації акцепторів. Концентрація дірок у дірковому напівпровіднику позначається pp, вони є основними носіями заряду, а концентрація електронів позначається np, вони є неосновними носіями заряду.


1.2. Енергетичні діаграми напівпровідників


Случайные файлы

Файл
181023.rtf
92450.rtf
13701-1.rtf
90663.rtf
25429-1.RTF




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.