Анализ работы компрессорных установок (126211)

Посмотреть архив целиком

53

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Филиал государственного образовательного учреждения

высшего профессионального образования

«Московский энергетический институт

(технический университет)»

Кафедра Промышленной теплоэнергетики








ВЫПУСКНАЯ РАБОТА

по направлению подготовки бакалавров технических наук:

Тема Анализ работы компрессорных установок













г. Смоленске


Оглавление


Введение

1. Влияние качества охлаждения на эффективность КУ

1.1 Экономия потребляемой мощности при идеальном и реальном охлаждении

1.2 Технико-экономический критерий эффективности охлаждения

2. Анализ систем охлаждения различных типов

2.1 Открытые водооборотные системы охлаждения

2.2 Системы непосредственного воздушного охлаждения

2.3 Системы воздушного охлаждения с промежуточным теплоносителем в закрытом контуре

3. Конструкция элементов систем охлаждения

3.1 Теплообменники компрессорных установок

3.2 Газоохладители низкого и среднего давления

3.3 Газоохладители высокого давления

4. Расчёт системы охлаждения КУ

4.1 Технические характеристики компрессора К-250-61-5

4.2 Расчёт технологической схемы компрессора

4.3 Расчёт ступени охлаждения компрессора

5. Влияние температуры окружающей среды на параметры системы охлаждения компрессора

6. Технико-экономический анализ целесообразности утилизации теплоты сжатия

Заключение

Список литературы




АННОТАЦИЯ


Выпускная работа бакалавра на тему: «Анализ работы компрессорных установок». Автор: студентка группы ЭО1-06 филиала ГОУВПО «МЭИ (ТУ)» в г. Смоленске Куковенкова Екатерина Сергеевна.

В выпускной работе рассмотрены вопросы влияния качества охлаждения на эффективность компрессорной установки, экономии потребляемой мощности при идеальном и реальном охлаждении. Проведён анализ систем охлаждения различных типов; рассмотрены конструкции элементов систем охлаждения - теплообменников компрессорных установок и газоохладителей различных типов.

Проведены расчёты системы охлаждения компрессорной установки, по результатам которых были построены графики, показывающие зависимость параметров компрессорной установки при изменении температуры окружающей среды.


Annotation


Bachelor’s final paper work on the theme: “Analysis of compressor unit’s work”.Author: student of the EO1-06 group of SEIHPE The Smolensk branch of Moscow Power Engineering institute (Technical university) Ekaterina Sergeevna Kukovenkova. In the final paper reviewed issues of influence of cooling quality on compressor unit’s efficiency, saving power consumption with the ideal and real cooling. The analysis of cooling system of various types took place; reviewed element’s constructions of cooling systems - heat exchangers of compressor units and heat exchangers for gas coolers of various types.

Were made calculations of the compressor unit’s cooling systems, on which results were graphs, showing the dependence of compressor unit’s parameters, on the thermal change.


ВВЕДЕНИЕ


Работоспособность, надёжность и экономичность большинства компрессорных установок существенно связаны с отводом теплоты от сжимаемого газа, с охлаждением цилиндра, редукторов, муфт, подшипников и электродвигателей. Комплекс устройств, позволяющих отводить теплоту от охлаждаемых элементов и передавать её окружающей среде, принято называть системой охлаждения. Совершенство системы охлаждения во многом определяет технический уровень компрессорной установки в целом.

Представление об устройстве и функционировании системы охлаждения охватывает широкий круг вопросов. К ним относят: термодинамическая схема компрессора; тип системы охлаждения и вид хладагента; конструкция газо- и маслоохладителей (включая и тип теплопередающей поверхности); компоновка аппаратов; устойчивость эксплуатационных характеристик; надёжность; обеспечение работоспособности в экстремальных условиях (например, при высоких и низких температурах окружающей среды); возможность и целесообразность утилизации теплоты сжатия; методы тепловых и гидравлических расчётов; технико-экономический анализ и оптимизация систем охлаждения.

В большинстве случаев сжатие газа в компрессоре сопровождается процессом охлаждения. При снижении температуры газа уменьшаются энергетические затраты на сжатие. Однако общая эффективность компрессорной установки определяется в результате технико-экономического анализа.

Охлаждение может производиться непосредственно в процессе сжатия или чередуя сжатие и охлаждение. В настоящее время наиболее распространён раздельный или многоступенчатый способ сжатия.



1. ВЛИЯНИЕ КАЧЕСТВА ОХЛАЖДЕНИЯ НА ЭФФЕКТИВНОСТЬ

КОМПРЕССОРНОЙ УСТАНОВКИ


1.1 Экономия потребляемой мощности при идеальном и реальном

охлаждении


Сжатие газа является термогазодинамическим процессом, который в подавляющем большинстве случаев сопряжён с процессом охлаждения. Необходимость в охлаждении связанна, в первую очередь, с соображениями экономичности производства сжатого газа. Из термодинамики следует, что экономические затраты на сжатие уменьшаются при наличии охлаждения. Однако организация процесса охлаждения газа требует собственных затрат, которые в отдельных случаях могут оказаться сопоставимыми с энергетическим выигрышем от охлаждения. Поэтому общая эффективность компрессорной установки должна рассматриваться уже как экономическая категория. В соответствии с этим настоящая глава объединяет термодинамические и технико-экономические аспекты организации охлаждения газа в компрессорных установках.

При отсутствии теплообмена с окружающей средой процесс сжатия газа сопровождается повышением его температуры. Это следствие первого закона термодинамики, в соответствии с которым при адиабатном сжатии (без изменения кинетической энергии газа), вся работа переходит в приращение энтальпии газа, которое для идеального газа соответствует приращению температуры.

Согласно уравнению адиабатного процесса


(1.1)


температура будет тем значительнее, чем больше отношение давлений π= Р21, и выше начальная температура газа . Охлаждая газ, можно уменьшить рост энтальпии. При этом работа, затраченная на сжатие газа, тоже будет уменьшаться. Когда отводимая теплота во всех точках процесса равна подводимой энергии, сжатие будет протекать при постоянной температуре, равной начальной температуре газа. Такой процесс называется изотермным. Он обеспечивает сжатие с наименьшими затратами энергии.

Газ можно охладить непосредственно в процессе сжатия или попеременно, чередуя сжатие и охлаждение, т. е. разделяя эти два процесса. В настоящее время в технике более распространён раздельный или многоступенчатый способ.

Рассмотрим процессы многоступенчатого адиабатного сжатия с идеальным охлаждением в Т,S-диаграмме на рис. 1.1.


Рис. 1.1. Процессы адиабатного сжатия с идеальным охлаждением в Т, S — диаграмме


Процесс 1-2-4-5 имеет две ступени сжатия 1-2, 4-5 и одно промежуточное охлаждение 2-4. Процесс 1-10-11-12-4-13-14-15 имеет четыре ступени сжатия и три промежуточных охлаждения. С увеличением числа охлаждений площадь под кривой многоступенчатого сжатия уменьшается, приближаясь к площади изотермного процесса. При очень большом числе охлаждений (в пределе бесконечном) оба способа, раздельный и совмещённый, приводят к тождественному результату - изотермному сжатию.

Если в процессе охлаждения температура газа достигает начального значения T0, как это изображено на рис. 1.1., то количество отведённой теплоты равно работе, затраченной на сжатие в предыдущей ступени, поскольку энтальпии идеального газа в точках 1,11,4,14,6 одинаковы. Таким образом, при наличии концевого охлаждения (не влияющего на работу сжатия), общее количество отведенной теплоты равно затраченной работе, как и при изотермном процессе. Это положение становится несправедливым для реальных газов. Например, сжатие воздуха с высоким содержанием паров воды. Если начальная температура воздуха 40°С и относительная влажность его 100%, то при охлаждении до исходной температуры количество отведённой теплоты превысит работу сжатия на 30-60%, поскольку к ней добавится теплота конденсации. Однако в большинстве практических случаев, отклонения сжимаемого газа от идеального состояния не велики, и суммарный тепловой поток в системе охлаждения можно оценивать значением потребляемой компрессором мощности. [1].

До сих пор охлаждение сжимаемого газа рассматривалось достаточно абстрактно: полагалось, что теплота должна быть отнята о передана другому телу. При этом не анализировалось, какая часть теплоты может быть реально передана другому телу, как неполнота охлаждения повлияет на процесс сжатия в последующих ступенях, что будет дальше с этой теплотой, имеет ли она какую-нибудь ценность. Прежде всего, рассмотрим возможные пути передачи теплоты. Конечным теплоприёмником является окружающая среда, включающая атмосферу и мировой океан. Температура окружающей среды T0 устанавливает предел самопроизвольного охлаждения любого нагретого тела. Охлаждение ниже температуры окружающей среды требует затрат энергии на передачу теплоты от тела с температурой Т < Т0 окружающей среде. Применительно к компрессору затраты энергии не окупаются снижением работы сжатия на проведение процесса сжатия на уровне Т < То. Термодинамический анализ показывает, что при самой экономичной организации сжатия (изотермный процесс при Т < Т0) и самом экономичном способе передачи теплоты окружающей среде (обратный цикл Карно), суммарная работа будет равна работе изотермного сжатия при температуре окружающей среды То. Таким образом, изотермное сжатие при температуре окружающей среды является оптимальным термодинамическим процессом. Его работа минимальна и может служить мерилом термодинамического совершенства компрессорной установки. Эффективность охлаждаемых многоступенчатых компрессоров принято оценивать изотермным КПД


, (1.2)


где Низ - изотермная удельная работа, Нохл - действительная удельная работа многоступенчатого сжатия, а Низ вычисляется при температуре всасывания Твс по формуле


(1.3)


Процесс многоступенчатого сжатия с охлаждением в виде пилообразной линии в T,S - диаграмме на рис. 1.1. состоит из равновесных процессов, изоэнтропного сжатия и охлаждения до температуры окружающей среды при постоянном давлении. В реальных ступенях компрессора конечные скорости сжатия делают процесс неравновесным: возникают трение, вихревые и волновые явления. Часть энергии, подводимой к газу, из-за этого рассеивается и переходит в теплоту.

Отклонение реальных процессов от идеальных показано на рис. 1.2.


Рис.1.2. Процесс политропного сжатия с реальным охлаждением в Т, S – диаграмме


Для достаточно полной передачи теплоты от охлаждаемого газа к окружающей среде (в пределе до точки 3' на рис. 1.2.) без затрат энергии потребовались бы бесконечно большие газоохладители. Разумное ограничение размеров аппаратов приводи к необходимости форсировать режимы теплообмена: создавать конечные разности температур между теплоносителями по всей длине тракта, тратить энергию на преодоление гидравлических сопротивлений. Фактически, охлаждение закончится не в точке 3', а в точке 3 при сохранении отношения давлений 1-й секции и конечного давления Р2 (рис. 1.2.) работу сжатия второй секции придётся увеличить как за счёт падения начального давления от Р1 до Р0 , так и за счёт повышения начальной температуры сжатия от То до Т1. Выделим ту часть суммарного увеличения работы сжатия, которая непосредственно связанна с неравновесностью процесса охлаждения. С этой целью представим удельную работу многосекционного компрессора в виде


, (1.4)


где - недоохлаждение газа до температуры окружающей среды ТО в аппарате, стоящем перед i-й секцией; - начальное и конечное давление в i-й секции;

- потеря давления в аппарате перед i-й секцией;


, где - политропный КПД i-й секции.


Используя разложение по малому параметру в линейном приближении, можно упростить выражение (1.4)


, (1.5)


где - отношение давлений секции по сечениям входа и выхода, - относительные потери давления. Потери, связанные с работой газоохладителей, логично оценить отношением работ компрессора с реальными и идеальными аппаратами. Под идеальными будем понимать аппараты, охлаждающие газ до температуры окружающей среды = 0и не имеющие гидравлических потерь =0. Работа компрессора с идеальными охладителями при прочих равных условиях минимальна.


(1.6)


Потери, связанные с не идеальностью газоохладителей, обозначим через называют коэффициентом приведенных потерь охлаждения.

Для охлаждаемого многоступенчатого компрессора


(1.7)


Коэффициент приведенных потерь охлаждения компрессора для выпускаемых ныне машин лежит в диапазоне . Коэффициенты приведенных потерь охлаждения i-й секции имеют более широкий диапазон: =1.01-1.12 [1].

Выражения (1.3) - (1.7) позволяют представить изотермный КПД компрессора (1.2) в виде


(1.8)


Сомножитель в выражении (1.8) появляется из-за того, что изотермную

работу [см. формулу (1.3)] принято определять по температуре всасывания, тогда как минимальная работа компрессора с идеальными охладителями [см. формулу (1.6)] определена по температуре окружающей среды. В общем случае

Если все секции одинаковы, т.е. и , то


, (1.9)


Умножая числитель и знаменатель на и вводя обозначение преобразуем (1.9.) к виду


(1.10)


Из формулы (1.10) видно влияние на различных факторов:

  • числа промежуточных охлаждений n

  • КПД процесса сжатия

  • коэффициента приведенных потерь охлаждения

При устремлении числа охлаждений к бесконечности n , z и выражение (1.10) имеет своим пределом величину


, (1.11)


которая для идеальной системы охлаждения () становится равной

Для иллюстрации соотношения экономии энергий от введения охлаждения и потерь, связанных с организацией, используют величину:


, (1.12)


где - удельная работа неохлаждаемого компрессора, в котором значение принято как среднее по отдельным секциям.

Полагая секции одинаковыми и используя обозначения (1.10), приведём (1.12) к виду


(1.13)


1.2 Технико - экономический критерий эффективности охлаждения


Термодинамический анализ позволил выявить влияние системы охлаждения на энергетическое совершенство компрессорной установки. Предельные возможности повышения термодинамической эффективности компрессора с реальными газоохладителями определены выражением (1.11)

В термодинамическом анализе, естественно, отсутствовала информация о том, как поведут себя величины и с увеличением числа охлаждений. Однако проектировщиков систем охлаждения в конечном счёте интересует не только термодинамическая эффективность процесса сжатия газа, сколько сумма материальных затрат, необходимых для реализации рассматриваемого процесса в условиях конкретного способа производства и эксплуатации компрессорной установки. Ясно, что полученная при n max экономия энергии, расходуемой на процесс сжатия, будет достигнута ценой роста затрат на изготовление большого числа крупных теплообменных аппаратов, на их транспортировку, обвязку трубопроводами, размещение на дополнительных производственных площадях, увеличение числа контрольно — измерительной аппаратуры, средств автоматики и т.д.

Поэтому в своём стремлении повысить термодинамическое совершенство компрессорной установки проектировщик оказывается поставленным перед необходимостью соизмерять получаемую при этом выгоду с ценой, которую приходится за неё платить. Иными словами, решающее слово при выборе варианта системы и степени её приближения к термодинамическому идеалу остаётся всегда за комплексно-экономическим анализом. Проведение такого анализа может быть выполнено на основе применяемого в настоящее время универсального технико-экономического критерия, известного в литературе под названием «приведенные затраты».

Сущность этой величины состоит в следующем.

Пусть имеются два варианта, каждый из которых решает поставленную техническую задачу (сжатие газа при заданном расходе до заданного давления). Реализация варианта А требует вложения К1 рублей, а варианта В - К2 рублей. Допустим для определённости, что вариант А дороже, т.е. К12. По этим сведениям ещё не возможно ответить на вопрос о целесообразности реализации более дешёвого варианта. С другой стороны, высокая стоимость реализации первого варианта не может сама по себе служить причиной отказа от него. Важно ответить на вопрос, выгоден ли вариант, требующий повышенных капитальных вложений, т.е. окупится ли эта разница в процессе эксплуатации достаточно быстро [1].

Для характеристики стоимости окупаемости капитальных вложений используется величина, называемая нормативным сроком окупаемости Тн. При этом предполагается, что если дополнительные капитальные вложения окупятся в процессе эксплуатации за срок, меньший, чем Тн, то они являются экономически оправданными. Иными словами, если эксплуатационные издержки вариантов соответственно Э1 и Э2, то при < Тн первый вариант будет более эффективным с экономической точки зрения.

В противном случае - наоборот. Это неравенство можно записать в виде


(1.14)


Величина, обратная нормативному сроку окупаемости, называется нормативным коэффициентом эффективности Е. Величину П = Э + ЕК принято называть приведенными затратами (сумма эксплуатационных издержек и капитальных вложений, отнесённых к одному году нормативного срока окупаемости).

Если сравниваются не два варианта, а несколько, то наиболее эффективным будет тот, у которого приведенные затраты являются минимальными.

Тот факт, что в структуре приведенных затрат фигурируют фундаментальные экономические категории, позволяет применять этот критерий для оптимизации любых конструкций и систем независимо от их особенностей и назначения. Это придаёт большую универсальность приведенным затратам как критерию оценки суммарных достоинств конкурирующих вариантов. Для вычисления приведенных затрат её составляющие должны быть выражены через технические характеристики рассматриваемой конструкции или системы: массу, габаритные размеры, потери энергии и т.п.

Таким образом, несмотря на экономическую природу приведенных затрат, внутреннее содержание этого критерия является техническим. Иными словами, приведенные затраты представляют собой синтетическую величину, характеризующую технические достоинства конструкции или системы в экономической форме. В частности, применительно к системам охлаждения, повышение термодинамического совершенства схемы приводит к снижению затрат энергии на реализацию процесса сжатия и, следовательно, к уменьшению годовых эксплуатационных издержек. Одновременно, как было отмечено выше, растут капитальные вложения на реализацию большого числа аппаратов больших габаритных размеров. Приведенные затраты позволяют оценить суммарный эффект этого

мероприятия. Внутреннее содержание составляющих приведенных затрат зависит от особенностей конкретного инженерного сооружения. При этом, чем полнее учитываются различные категории затрат, тем более обоснованным является результат анализа.

Для компрессорной установки величина К складывается из следующих основных составляющих


К = Ккгпрстм, (1.15)


где Кк - стоимость компрессора, Кг - стоимость газоохладителей, Кпр - стоимость привода, редуктора, муфт, системы автоматики, трубопроводов и т. д., Кст - стоимость компрессорной станции (включая электросиловую часть, автоматику и т. п.), Км - стоимость монтажа установки.

Эксплуатационные издержки могут быть разделены на две группы:

  • пропорциональные капитальным вложениям

  • не зависящие от них

К первой группе относятся амортизационные отчисления и расходы на текущий ремонт и содержание установки:


Э = А-К+Ар-К, (1.16)


где А — доля годовых амортизационных отчислений, Ар — доля годовых расходов на ремонт и содержание установки.

От капитальных вложений на компрессорную установку не зависят стоимости энергии на привод компрессора и хладагента (например, оборотной воды)



, (1.17)


где Цэ - цена энергии, руб./(кВт-ч), Цв - цена хладагента, руб./м3, Nk - потребляемая мощность компрессорной установки, кВт, Vb - расход хладагента, м3/с, Т - время работы установки, ч.

Нормативный коэффициент эффективности Е обычно принимается равным, что соответствует значению нормативного срока окупаемости, примерно в 7 лет.




2. АНАЛИЗ СИСТЕМ ОХЛАЖДЕНИЯ РАЗЛИЧНЫХ ТИПОВ


Энергия привода компрессора тратится на сжатие газа и покрытие механических потерь. Как указывалось выше, энергия сжатия газа при наличии концевого охладителя практически полностью отводится в окружающую среду. Энергия, затрачиваемая на покрытие механических потерь, превращается полностью в теплоту трения узлов компрессора и также должна быть передана окружающей среде. Комплекс оборудования, осуществляющий передачу теплоты от компрессорной установки окружающей среде, называется системой охлаждения. По способу передачи теплоты окружающей среде системы охлаждения компрессорных установок можно разделить на три основных типа:

  1. системы непосредственного охлаждения;

  2. системы с промежуточным теплоносителем;

  3. смешанные системы [1]

Окружающей средой для компрессорных установок является совокупность атмосферного воздуха и воды надземных и подземных водоёмов (морей, озёр, рек, родников, артезианских источников и т.д.). За исключением специальных случаев (например, в судовых установках) теплота компрессорных установок отдаётся воздуху. Поэтому из числа систем непосредственного охлаждения наибольший интерес представляют системы воздушного охлаждения. Системы охлаждения с промежуточным теплоносителем подразделяются на открытые водооборотные (наиболее распространённые в настоящее время) и системы с закрытым контуром для промежуточного теплоносителя. По виду теплообмена сжимаемого газа с промежуточным теплоносителем различают системы рекуперативные и контактные (конвективного и испарительного охлаждения). Смешанные системы охлаждения представляют собой различные комбинации непосредственного охлаждения и охлаждения с промежуточным теплоносителем. Например, газоохладители компрессорной установки работают по схеме с промежуточным теплоносителем, а маслоохладители - по схеме непосредственного охлаждения. В общем случае в состав систем непосредственного охлаждения входят газо- , масло- и водоохладители, в которых отводится теплота от газа, узлов трения, электродвигателя и цилиндров компрессора, а также оборудования для подачи к этом аппаратам воздуха или воды. В системах с промежуточным теплоносителем, к перечисленному добавляются насосы для его транспортировки и аппараты, в которых промежуточный теплоноситель отдаёт теплоту окружающей среде.

Ниже будут рассмотрены основные системы охлаждения: открытая водооборотная; с непосредственным воздушным охлаждением; с воздушным охлаждением промежуточного теплоносителя в закрытом контуре и с утилизацией теплоты компрессорной установки.


2.1 Открытые водооборотные системы охлаждения


Промежуточным теплоносителем в таких системах является вода. На рис. 2.1 представлена открытая водооборотная система охлаждения многоступенчатого компрессора.


Рис. 2.1. Открытая водооборотная система охлаждения



Газ из ступени сжатия 6 поступает в газоводяной охладитель 7 и далее в ступень 8. Циркуляцию масла в компрессорной установке обеспечивает маслонасос 2. Теплота трения от редуктора 4, муфты 5 и подшипников 3 отводится водой в маслоохладителе 1. После охладителей компрессора вода поступает в открытую градирню 10. В градирне происходит контактный теплообмен воды с окружающим воздухом и одновременно испарительное охлаждение. Воздух в градирне перемещается естественной тягой (башенные градирни) или вентилятором 11 (вентиляторные градирни). Стекающая в нижнюю часть градирни охлаждённая вода возвращается насосом 9 в охладители 1, 7. В установках небольшой мощности вместо градирен иногда используют брызгальные бассейны.

Основные преимущества открытых водооборотных систем связаны с высоким коэффициентом теплоотдачи со стороны воды, определяющем сравнительно небольшие размеры газо- и маслоохладителей, возможность их размещения в непосредственной близости от машин и соответственно малую протяжённость газоводов.

К недостаткам открытых водооборотных систем можно отнести:

  1. высокую стоимость охлаждающей воды;

  2. нестабильность характеристик компрессоров, оснащённых открытыми во- дооборотными системами охлаждения;

  3. нерентабельность утилизации низкотемпературной теплоты, характерной для открытых водооборотных систем.


2.2 Системы непосредственного воздушного охлаждения


Система непосредственного воздушного охлаждения компрессорной установки представлена на рис. 2.2.

Хладагентом в газоохладителе 1 и маслоохладителе 2 является окружающий воздух, прокачиваемый через теплообменники вентилятором 3. На рис. 2.2. масло- и газоохладитель объединены в блок охладителей с общим вентилятором. В крупных компрессорных установках таких блоков несколько, каждый с автономным вентилятором.


Рис.2.2. Системы непосредственного воздушного охлаждения


Основной причиной, длительное время препятствующей широкому использованию систем воздушного охлаждения в компрессорных установках (КУ), является низкий уровень теплоотдачи со стороны воздуха, приводящий к резкому увеличению теплопередающей поверхности, т.е. металлоёмкости и размеров аппаратов воздушного охлаждения (АВО). Если последствия роста металлоёмкости очевидны, то рост их размеров в силу специфики компоновки теплообменников с компрессорной установкой требует отдельного рассмотрения.


Случайные файлы

Файл
49287.rtf
169607.rtf
27089-1.rtf
124995.rtf
14413.rtf