Реконструкция СЭС обогатительной фабрики (125454)

Посмотреть архив целиком


РЕФЕРАТ


Отчет: стр., рисунков, таблицы, источников.


ТРАНСФОРМАТОР, РАСЧЁТНАЯ НАГРУЗКА, КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ, ТЕРМИЧЕСКАЯ СТОЙКОСТЬ, АВТОМАТИЧЕСКИЙ ВВОД РЕЗЕРВА, ОПЕРАТИВНЫЙ ТОК, ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ


В данном дипломном выполнен электротехнический расчёт низковольтной сети в связи с расширением производства на обогатительной фабрике в отделении флотации и фильтрации. Проведена реконструкция электрической части распределительного устройства главного корпуса, произведен технико-экономический расчет.

Определены рабочие токи и токи короткого замыкания, в соответствии с которыми произведен выбор силовых трансформаторов и основного электротехнического оборудования. Рассмотрены также устройства релейной защиты и автоматики, используемые на распределительных устройствах подстанций.

В рамках реконструкции распределительной сети 6 кВ произведен расчет КЛ-6. Также рассмотрены меры, обеспечивающие безопасность и экологичность проекта.


СОДЕРЖАНИЕ


1. Краткая климатическая характеристика района

2. Характеристика технологического процесса

3. Расчёт электрических нагрузок

3.1 Общие сведения

3.2 Определение расчётных нагрузок на участке флотационных машин сети 0,4 кв

3.3 Расчётная нагрузка на шинах 6 кв ру-1

4. Выбор числа и мощности цеховых трансформаторов с учётом компенсации реактивной мощности.

4.1 Выбор оптимального числа цеховых трансформаторов

4.2 Выбор мощности конденсаторных батарей для снижения потерь мощности в трансформаторах

5. Схема внутреннего электроснабжения обогатительной фабрики

5.1 Описание схемы внутреннего электроснабжения

5.2 Компенсация реактивной мощности

5.3 Выбор кабельных линий по нагреву длительно допустимым током

6. Расчёт токов короткого замыкания и выбор высоковольтного оборудования

6.1 Расчёт токов короткого замыкания в сети 6 кв

6.2 Выбор высоковольтных выключателей

6.3 Перенапряжения, возникающие при коммутации индуктивных токов вакуумными выключателями

6.5 Выбор трансформаторов напряжения

7. Низковольтное электроснабжение участка флотационных машин

7.1 Схема цеховой электрической сети

7.2 Расчёт электрических нагрузок в питающей и распределительной сети участка

7.2.1 Расчёт силовой электрической нагрузки в распределительной сети

7.3 Определение центра электрических нагрузок

7.3.1 Выбор и расчёт троллейных линий

7.3.2 Расчёт осветительных установок участка

7.3.3 Расчёт осветительной сети по допустимой потере напряжения

7.3.4 Выбор сечения проводов осветительной сети

7.3.5 Проверка выбранного сечения осветительной сети по нагреву

7.3.6 Выбор сечения проводов осветительной сети по механической прочности

7.4 Выбор сечений проводов и жил кабелей по длительно допустимому току

7.5 Расчёт токов короткого замыкания

7.5.1 Расчёт начального значения периодической составляющей тока трёхфазного короткого замыкания.

7.6 Проверка выбранных проводников и аппаратов на действие токов кз

8. Расчет релейной защиты кабельных линий 6 кв

9. Организация работы по экономии энергоресурсов на промышленном предприятии

10. Безопасность и экологичность

10.1 Экологичность

10.2 Экономия ресурсов

10.3 Пожарная безопасность

Заключение

Список использованных источников


ВВЕДЕНИЕ


Формирование электрических систем осуществляется с помощью электрических сетей, которые выполняют функции передачи энергии и электроснабжения потребителей. С учётом этого и ведётся их проектирование.

Граница между ЭС и потребителем – условная и проводится на договорной основе в специальных пунктах раздела электрических сетей, поэтому в хозяйственном плане в состав ЭС могут входить электрические сети самых низких номинальных напряжений (0,4кВ), тогда как понятие потребитель электроэнергии может включать в себя сети очень высоких напряжений (220 и даже 500 кВ).

Таким образом, организационно потребители электроэнергии не входят в состав ЭС, но в связи с важнейшей особенностью электроэнергетического производства – неразрывностью технологического процесса производства и потребления электроэнергии – и связанным с этим сильным влиянием электроприемников на режимы работы энергосистемы в целом и на качество отпускаемой электроэнергии должны рассматриваться совместно с другими элементами ЭС. Взаимоотношения потребителя с ЭС включают в себя вопросы различного характера: юридическо-правовые, технико-экономические, оперативно-диспетчерские и т.д. Сами потребители могут характеризоваться структурой их ведомственной принадлежности, размерами потребления, составом приемников электроэнергии и их техническими данными, режимами потребления и возможностью их регулирования, требованиями к надежности электроснабжения и др.

На сегодняшний день одной из главных задач энергетики является правильное и надежное электроснабжение всех потребителей качественной энергии. Надежность подачи электроэнергии – один из самых важных показателей электроснабжения. Всякое отключение электроэнергии плановое (для ревизии и ремонта) и особенно неожиданное, аварийное – приносит огромный ущерб потребителю и самой энергосистеме. Поэтому необходимо применять эффективное и экономически целесообразные меры по обеспечению надежности подачи электроэнергии.

Главным потребителем электроэнергии является промышленность. В последние годы в стране отчетливо просматривается тенденция к стабилизации экономики, что неуклонно ведет к росту энергопотребления промышленными предприятиями.

Однако экономический кризис оказал значительное влияние практически на все отрасли экономики страны, в том числе и на электротехническую промышленность и на условия эксплуатации оборудования электрических сетей.

В соответствии с этим в последние годы обострилась необходимость восстановления изношенного оборудования, замена морально устаревшего более современным и надежным.

Таким образом, проблемы реконструкции и технического перевооружения электрических сетей приобретают с каждым годом все большую актуальность и не должны отодвигаться на второй план. Настоящий проект предусматривает рассмотрение одного из вариантов расширения электроснабжения. Основной задачей проектирования является повышение надежности электроснабжения потребителей путем замены устаревшего оборудования и изменения схем электроустановок подстанции, а также обеспечение возможности подключения новых потребителей.


КРАТКАЯ КЛИМАТИЧЕСКАЯ ХАРАКТЕРИСТИКА РАЙОНА


Таблица 1 – Климатические условия района

Климатические условия

Расчетная величина

Район по ветру

II

Нормативная скорость ветра, м/сек

8

Район по гололеду

III

Нормативная стенка гололеда, мм

15

Низшая температура воздуха, оС

-50

Среднегодовая температура воздуха, оС

-2,9

Высшая температура воздуха, оС

45

Число грозовых часов в год

20

Среднегодовая скорость ветра, м/сек

1,9

Количество дней с ветром более 10 м/сек, %

<30

Вес снегового покрова, кгс/м2

50

Продолжительность отопительного периода, сут.

260

Температура гололедообразования, оС

-10

Степень загрязнения атмосферы

I

Нормативная глубина промерзания грунтов, м

3

Сейсмичность района, балл.

6

Глубина протаивания грунта на начало грозовой деятельности, м

0,4

Эквивалентное удельное сопротивление грунта в летний период, Омм

43

Эквивалентное удельное сопротивление грунта в зимний период, Омм

61



Характеристика технологического процесса


Обогатительная фабрика разреза «Нерюнгринский» Южно-Якутского угольного комплекса предназначена для дробления с последующим обогащением коксующихся углей с выделением трёх продуктов: угольного концентрата, промпродукта и отходов. Проект фабрики выполнен на базе оборудования, поставляемого Японскими фирмами.

Метод и технологическая схема обогащения выбраны с учётом спецификации Нерюнгринских углей, характеризующихся непостоянством гранулометрического состава, чрезвычайно трудной обогатимости и очень трудной флотируемостью шламов.

Технологическая схема обогащения включает дробление угля до крупности 0-30 мм с последующим обогащением в трёхпродуктовых тяжёлосредных гидроциклонах и флотацию шламов. Разгрузка угля, поступающего с разреза, производится в углеприёмные ямы, ёмкостью по 300 тонн, расположенные в блоках приёмных ям и 1-2 стадии дробления. Рядовой уголь из бункеров пластинчатыми питателями ПТ-24 направляется на колосниковые решётки с размерами щели 150 мм. Надрешётный продукт поступает на щёковые дробилки СМД-60А, где дробится до 200 мм. Дроблёный уголь, объединяется с подрешётным продуктом и ленточными конвейерами направляется на грохоты цилиндрические ГЦЛ-3, с которых куски более 100 мм системой желобов направляются на зубчатые дробилки ДДГ10, где дробится до 100 мм и конвейерами подаётся в здание III стадии дробления, где поступает в две делительные воронки, из которых питатели КТ14 через желоба подаются на односитные грохоты фирмы «ШЕНК» с размером ячеек сита 30 мм. Куски более 30 мм подаются на двухвалковые зубчатые дробилки фирмы «Куримото».

Дроблёный и подрешётный уголь размером 0-30 мм наклонными ленточными конвейерами транспортируется до узлов перегрузки на конвейеры, которыми доставляются в аккумулирующие бункеры на отметку 42,8 м и при помощи двух ленточных конвейеров на отметку 38,0 м распределяется по трём силосам общей ёмкостью 30 тыс. тонн, снабжённых девятью выгрузочными воронками каждый.

Разгрузка силосов осуществляется при помощи дозаторов непрерывного действия ДН и питателей качающихся КП-12 на ленточные конвейеры, которые распределяют уголь по трём конвейерам, подающим его в главный корпус на обогащение.

Главный корпус состоит из трёх отделений: тяжёлых сред, флотации и фильтрации, фильтпрессов. Уголь класса 0-30 мм попадает на три секции отделения тяжёлых сред. После классификации в багерзумпфах и дешламации на грохотах фирмы «Шенк» уголь класса 0,5-30 мм обогащается в тяжёлосредных гидроциклонах ГТ-710/500.00. Продукты обогащения обезвоживаются на грохотах фирмы «Шенк» и центрифугах НЕ-1300 фирмы «Гумбольд» ФРГ. Порода класса 0,5-30 мм транспортируется в бункеры породы, шлам класса 0-0,5 мм насосами подаётся на соответствующие три секции отделения флотации и фильтрации и обогащаются во флотационных машинах фирмы «Вэмко» модели 144 с выделением трёх продуктов: флотоконцентрата, камерного промпродукта и флотохвостов.

Флотоконцентрат после пенопоглащения обезвоживается на дисковых вакуумфильтрах «Аджистик». Камерный промпродукт после флокуляции обезвоживается на дисковых вакуумфильтрах «Аджистик». Флотохвосты после сгущения в сгустителях обезвоживаются на фильтпрессах «Курита» и конвейером грузятся в автосамосвалы и вывозятся на отвал. Обезвоженные на грохотах, центрифугах и вакуумфильтрах «Аджистик» концентрат и промпродукт класса 0-0,5 и 0,5-30 мм конвейерами подаются в сушильное отделение, где размещаются сушильные установки «кипящего слоя» типа «Мак-Нелли». Влажные концентрат и промпродукт из главного корпуса поступают в 4 бункера ёмкостью 700 тонн каждый, откуда вибропитателями подаются в сушильные камеры. Крупный высушенный уголь из сушильной камеры выгружается через роторные питатели конвейерами и транспортируется в склад готовой продукции.

Угольная пыль улавливается циклонами первой и второй ступенями улавливания и после них скребковыми конвейерами подаётся в смесители на смешивание с сырым углём, после чего поступает также на склад готовой продукции. Часть пылеконцентрата конвейерами подаётся на молотковые мельницы в которых подсушивается, измельчается и подаётся в камеры сгорания.

Санитарная очистка газов производится в мокрых пылеулавливателях скрубберах. Очищенные газы через дымовую трубу выбрасываются в атмосферу.

Поступающие на склад готовой продукции концентрат, промпродукт и рядовой уголь с энергетического комплекса катучими конвейерами распределяются по четырём силосам, оборудованными качающимися питателями КЛ-20 для выгрузки угля на конвейеры, подающие его на погрузочный пункт.

Планируемое расширение системы электроснабжения (СЭС) затрагивает отделение флотации и фильтрации. Где основную массу низковольтного оборудования составляют асинхронные электродвигатели большого спектра мощностей и несколько высоковольтных асинхронных двигателей на 6 кВ мощностью по 500 кВт каждый.

Ввиду непрерывности технологического процесса как в отделении флотации так и на предприятия в целом и трёхсменном режиме работы электроприёмники (ЭП) участвующие в процессе производства по обеспечению их электрической энергией можно отнести ко II категории надёжности, перерыв электроснабжения которых приведёт к недоотпуску продукции и простою рабочих, механизмов и промышленного транспорта.


Расчёт электрических нагрузок


Общие сведения


Первым шагом проектирования системы электроснабжения является определение электрических нагрузок. По значению электрических нагрузок выбирают и проверяют электрооборудование системы электроснабжения, определяют потери мощности и электроэнергии. От правильной оценки ожидаемых нагрузок зависят капитальные затраты на систему электроснабжения, эксплуатационные расходы, надёжность работы электрооборудования. В настоящее время используется уточнённый метод расчёта электрических нагрузок с использованием расчётного коэффициента /1/.

Определение электрических нагрузок в системе электроснабжения (СЭС) промышленного предприятия выполняют для характерных мест присоединения приёмников электроэнергии. При этом отдельно рассматривают сети напряжением до 1 кВ и выше /3 с. 41/.

Номинальная (установленная) активная мощность приёмника электроэнергии – это мощность, указанная на заводской табличке или паспорте приёмника электроэнергии, при которой приёмник электроэнергии должен работать.

Номинальную мощность (активную Pном и реактивную Qном) группы электроприёмников (ЭП) определяют как алгебраическую сумму номинальных мощностей отдельных приёмников, приведённых к продолжительности включения ПВ = 1.

Групповая номинальная (установленная) активная мощность:


, ()


где n – число электроприёмников.

Групповая номинальная реактивная мощность:


()


Средние активные и реактивные мощности характерной группы ЭП:


,

. ()


Суммарные значения средней активной и реактивной мощности группы ЭП:


,

. ()


где m – число характерных категорий ЭП.

Определяется средневзвешенный коэффициент использования группы ЭП:


. ()


Определяется эффективное число ЭП:


, ()

если окажется, что эффективное число ЭП больше фактического числа ЭП, то принимаем .

В зависимости от средневзвешенного коэффициента использования и эффективного числа ЭП по кривым, представленным в /1/ определяется коэффициент расчетной нагрузки .

Расчетная активная мощность групп ЭП напряжением до 1 кВ:


, ()


Расчетная реактивная мощность:

При и . ()

При > и . ()

К расчётным силовым нагрузкам Рр.с и Qp.c добавляются осветительные нагрузки Рр.о и Qp.o.


()

()


Полная расчётная мощность.


()


Определение расчётных нагрузок на участке флотационных машин сети 0,4 кВ


Разделим все ЭП на характерные группы с одинаковой активной мощностью pном, коэффициентом использования ки и tg . Дальнейшие расчёты покажем на примере характерной группы насосов типа WDF200L c номинальной мощностью 30 кВт, коэффициентом использования 0,7, tg  равным 0,88 и количеством 10 шт.

Номинальная активная мощность характерной группы насосов WDF200L:


Pном = 30  10 = 300 кВт.


Номинальная реактивная мощность характерной группы насосов WDF200L:


Qном = 300  0,88 = 264 квар.


Средняя активная мощность характерной группы насосов WDF200L:


PC = 300  0.7 = 210 кВт.


Средняя реактивная мощность характерной группы насосов WDF200L:


QC = 210  0.88 = 184 квар.


Подобные расчёты проведём для каждой характерной группы ЭП, а результаты сведём в таблицу 2. По найденным суммарным значениям средней активной и реактивной мощности в таблице 2 рассчитаем средневзвешенный коэффициент использования и эффективное число ЭП.


Таблица 2 – Расчёт электрических нагрузок на участке флотационных машин


Суммарная установленная активная мощность группы ЭП:


Рном = 2605 кВт.


Номинальная мощность наиболее мощного ЭП:


Рном.max = 75 кВт.


Суммарная средняя активная мощность группы ЭП:


Рср04 = 2003 кВт.


Суммарная средняя реактивная мощность группы ЭП:


Qср04 = 1387 кВт.


Средневзвешенный коэффициент использования группы ЭП:


.


Эффективное число ЭП на 0,4 кВ:


.


Коэффициент расчетной нагрузки для 0,4 кВ находим по кривым /1/.


Кр04 = 1

Расчетная активная мощность группы ЭП на 0,4 кВ



Расчетная реактивная мощность группы ЭП на 0,4 кВ


Qр04 = Qср04 = 1387 квар


Номинальная мощность светильников:


Рном.о = 160 кВт


Коэффициент спроса освещения:


Кс.о = 0,95


Реактивная мощность используемых установок освещения tgо = 0,3.

Расчетная осветительная нагрузка:



Расчетная нагрузка в сети 0,4 кВ составляет:


Рр = Рр04 + Рр.о = 2003 + 152 = 2155 кВт

Qр = Qр04 + Qр.о = 1387 + 45,6 = 1432,6 квар


Подобные расчёты проводим по всем участкам отделения флотации и фильтрации и заносим в таблицу 3.

Таблица 3 – Электрические нагрузки отделения флотации


Расчётная нагрузка на шинах 6 кВ РУ-1


Расчётная мощность на шинах 6-10 кВ распределительных и главных подстанций определяется с учётом коэффициента одновременности, значение которого принимается по /1, табл. 4/ в зависимости от средневзвешенного коэффициента использования и числа присоединений к сборным шинам распределительного устройства.


Pp = Pc  Ko, ()

Qp = Qc  Ko, ()

. ()


Расчёты электрической мощности для отделения флотации и фильтрации представлены в приложении 3.

Выбор числа и мощности цеховых трансформаторов с учётом компенсации реактивной мощности

Количество цеховых ТП непосредственно влияет на затраты на распределительные устройства напряжением 6-20 кВ и внутризаводские и цеховые электрические сети. Так при уменьшении числа ТП (т.е. при увеличении их единичной номинальной мощности) уменьшается число ячеек РУ, суммарная длина линий и потери электроэнергии и напряжения в сетях 6-20 кВ, но возрастает стоимость сетей напряжением 0,4 кВ и потери в них. Увеличение числа ТП, наоборот, снижает затраты на цеховые сети, но увеличивает число ячеек РУ 6-20 и затраты на сеть 6-20 кВ. При некотором количестве трансформаторов с номинальной мощностью Sном.т можно добиться минимума приведённых затрат при обеспечении заданной степени надёжности электроснабжения. Такой вариант будет являться оптимальным, и его следует рассматривать как окончательный /3, с.101/.

Выбор оптимального числа цеховых трансформаторов

Минимальное число цеховых трансформаторов Nmin одинаковой мощности Sном.т, предназначенных для питания технологически связанных нагрузок, определяется по формуле


, ()


где Рр – расчётная активная мощность технологически связанных нагрузок;

Кз – рекомендуемый коэффициент загрузки трансформатора;

N – добавка до ближайшего целого числа.



Экономически оптимальное число трансформаторов Nопт определяется удельными затратами З* на передачу реактивной мощности и отличаются от Nmin на величину m


Nопт = Nmin + m ()

где m – дополнительно установленные трансформаторы;

З* = Кз · З*тп ()


При отсутствии достоверных стоимостных показателей для практических расчётов допускается считать З*тп = 0,5 и тогда Nопт определять принимая значения m в зависимости от Nmin

Итак m = 0, соответственно


Nопт = 8 + 0 = 8


Наибольшую реактивную мощность, которую целесообразно передать через трансформаторы в сеть напряжением 0,4 кВ, определяют по формуле


, ()


где Рр – активная расчётная нагрузка;


.


Суммарная мощность конденсаторных батарей на напряжение 0,4 кВ составит


, ()

Qp – реактивная расчётная нагрузка.


Если в расчётах окажется, что Qнк1 < 0, то установка батарей конденсаторов при выборе оптимального числа трансформаторов не требуется.

Выбор мощности конденсаторных батарей для снижения потерь мощности в трансформаторах

Дополнительная мощность Qнк2 НБК для группы трансформаторов определяется по формуле:


Qнк2 = Qр – Qнк1 –   Nтр  Sном.т. ()


где  – расчётный коэффициент, зависящий от расчётных параметров Кр1 и Кр2 и который при отсутствии достоверных данных можно принять равным 0,4 по /3 с. 107/.



Установка НБК 2 не требуется, т.к. Qнк2 < 0.

Устанавливаем 8 НБК типа УКМ58-0,4-200-33У3.

При мощности НБК Qнбк = 200 квар на низшей стороне одного трансформатора общая скомпенсированная мощность участка



Нескомпенсированная реактивная мощность


Схема внутреннего электроснабжения обогатительной фабрики


Описание схемы внутреннего электроснабжения


Рис. 1. Структурная схема внутреннего электроснабжения.


Внутризаводское электроснабжение обогатительной фабрики осуществляется с помощью электрической сети напряжением 6 кВ выполненной по радиальной схеме Рис. 1, кабельными линиями проложенными в воздухе в кабельных коробах.

Компенсация реактивной мощности

Компенсация реактивной мощности (КРМ) является неотъемлемой частью задачи электроснабжения промышленного предприятия. Компенсация реактивной мощности одновременно с улучшением качества электроэнергии в сетях промышленных предприятий является одним из основных способов сокращения потерь электроэнергии.

Установку отдельных высоковольтных батарей конденсаторов (ВБК) рекомендуется предусматривать на тех РП, где реактивная нагрузка отстающая и имеется техническая возможность такого присоединения.

Суммарная реактивная мощность ВБК распределяется между отдельными РП пропорционально их некомпенсированной реактивной нагрузке на шинах 10(6) кВ и округляется до ближайшей стандартной мощности комплектных конденсаторных установок (ККУ).

К каждой секции РП рекомендуется подключать ККУ одинаковой мощности, но не менее 1000 квар. При меньшей мощности батареи ее целесообразно устанавливать подстанции.

Для повышения коэффициента мощности электроустановок применяются конденсаторные установки (КУ), которые предназначены для автоматической компенсации реактивной мощности нагрузок потребителей в сетях общего назначения.

КУ представляют собой ячейки, в которых размещены аппаратура управления, измерения и сигнализации и конденсаторы, соединенные по схеме треугольника.

Автоматическое отключение конденсаторов при перегрузке по току за счет повышения напряжения и внешних гармоник в установках обеспечивает электротоковое реле. Защита от токов короткого замыкания осуществляется плавкими предохранителями. Для включения и отключения ступеней в установках применены магнитные пускатели. Установки оснащены регулятором и могут работать в режиме автоматического и ручного управления. Имеются индикаторы, указывающие состояние установки в процессе ее эксплуатации.

Произведём расчёт оптимальной мощности компенсирующих устройств на РУ-1.

Необходимая мощность компенсирующих устройств на РУ –1 определяется исходя из баланса между генерируемой и потребляемой реактивными мощностями:


, ()


где Qку – мощность компенсирующих устройств, квар;

Qг.с – мощность, выдаваемая системой, квар;

Qн – мощность нагрузки, квар.

Реактивная мощность нагрузки на РУ – 1 определяется как сумма нескомпенсированной реактивной мощности со стороны 0,4 кВ и потребляемой реактивной мощности асинхронными двигателями.

Нескомпенсированная реактивная мощность со стороны 0,4 кВ, определенная ранее, равна Qнеск.04 – 3200 квар.

Реактивная мощность АД определяется по формуле:


, ()


где Qад – потребляемая реактивная мощность всех АД, квар;

Рад – активная мощность одного АД, кВт;

tgад – коэффициент мощности АД, равный для этой модели

tgад = 0,484;

Nад – количество АД.


.


Реактивная мощность потребления на РУ – 1:


. ()


Необходимая мощность КУ на РУ – 1:


, ()


где Рру1 – активная мощность нагрузки на РУ – 1 (определена в разделе 1).

Мощность КУ на одну секцию:


, ()


где Nс – количество секций на РУ- 1.

Принимается для установки на одну секцию комплектное компенсирующее устройство УКЛ56-6,3-450У3.

Полная мощность КУ на РУ – 1:


.


Полная некомпенсированная реактивная мощность на РУ – 1:


, ()

.


Выбор кабельных линий по нагреву длительно допустимым током

Для обеспечения нормальных условий работы линии надо выбирать такое сечение проводника для которого допустимый ток больше или равен наибольшему току в линии.

Сечения жил кабелей по нагреву длительным расчётным током. При этом должно соблюдаться соотношение

Ip ≤ Кп1  Кп2  Iд, ()


где Кп1 – поправочный температурный коэффициент;

Кп2 – поправочный коэффициент, зависящий от количества параллельно прокладываемых кабелей и от расстояния между ними.

Iд – допустимый ток для проводника принятой марки и условий его прокладки.

Значения допустимых длительных токовых нагрузок составлены для нормальных условий прокладки проводников: температура воздуха +25 С, земли +15 С и при условии что в траншее уложен только один кабель.

Если монтаж кабелей выполнен на лотках плотной группой, то поправочный коэффициент Кп2 можно найти по формуле /9 с.18/:


, ()


где n – общее число кабелей в группе;

m – число слоёв в группе;

А – для небронированных кабелей А = 1, а для бронированных соответственно при однослойной, двухслойной и трёхслойной прокладке А = 1,08; 1,15; 1,2.

Коэффициент Кп1 можно найти по формуле:


, ()


где Тм – максимально допустимая температура жилы;

Т01 – расчётная температура окружающей среды;

Т02 – изменённая температура окружающей среды, для которой необходимо пересчитать ток нагрузки.

Iдоп ≥ Iнб, ()


При проверке на нагрев принимается получасовой максимум тока наибольший из средних получасовых токов, т. е. Iнб – это наибольший из средних за полчаса токов данной линии. Для ВЛ проверяются нормальные, послеаварийные и ремонтные режимы.

Для кабельных линий до 10 кВ можно превысить Iдоп при перегрузках или авариях, если наибольший ток предварительной нагрузки линии в нормальном режиме был не более 80% допустимого /6, табл. 1.3.1/, т. е. при условии


0,8Iдоп ≥ Iнб, ()


В послеаварийных режимах кабельных линий перегрузка допускается до 5 суток и определяется условием


KавIдоп ≥ Iав.нб, ()


где Iав.нб - наибольший из средних получасовых токов в послеаварийном режиме;

Kав – коэффициент перегрузки в послеаварийном режиме, показывающий на сколько можно превышать Iдоп.

В зависимости от условий прокладки кабеля, предварительной нагрузки в нормальном режиме и длительности наибольшей нагрузки Кав определяется по /6, табл. 1.3.1/.

Выбор осуществим на примере КЛ соединяющей РУ-1 и КТП-1 тремя фидерами.

Кабель типа АВВГ (3х240) имеет сечение 240 мм, проложен в воздухе при температуре 10°С, длительно допустимый ток в соответствии с /7, табл. 7.10/ Iдоп.табл = 470 А, а допустимая температура Θдоп = 65°С.

Расчеты представлены в приложении 5.

Результаты проверка остальных кабельных линий сведена в таблицу 4.


Таблица 4 – Выбор кабельных линий по условиям нагрева в нормальном и послеаварийном режимах


Расчёт токов короткого замыкания И ВЫБОР высоковольтного оборудования


Расчёт токов короткого замыкания в сети 6 кВ

Коротким замыканием называют всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы электрическое соединение различных точек электроустановки между собой или с землей, при котором токи в аппаратах и проводниках, примыкающих к месту соединения, резко возрастают, превышая, как правило, расчетные значения нормального режима.

При расчете токов коротких замыканий в электроустановках переменного тока напряжением свыше 1 кВ допускается:

  1. Не учитывать сдвиг по фазе ЭДС различных синхронных машин и изменение их частоты вращения, если продолжительность КЗ не превышает 0,5 с;

  1. Не учитывать межсистемные связи, выполненные с помощью электропередачи (вставки) постоянного тока;

  2. Не учитывать поперечную емкость воздушных линий электропередачи напряжением 110 – 220 кВ, если их длина не превышает 200 км, и напряжением 330 – 500 кВ, если их длина не превышает 150 км;

  3. Не учитывать насыщение магнитных систем электрических машин;

  4. Не учитывать ток намагничивания трансформаторов и автотрансформаторов;

  5. Не учитывать влияние активных сопротивлений различных элементов исходной расчетной схемы на амплитуду периодической составляющей тока КЗ, если активная составляющая результирующего эквивалентного сопротивления расчетной схемы относительно точки КЗ не превышает 30% от индуктивной составляющей результирующего эквивалентного сопротивления;

  6. Приближенно учитывать затухание апериодической составляющей тока КЗ, если исходная расчетная схема содержит несколько независимых контуров;

  7. Приближенно учитывать электроприемники, сосредоточенные в отдельных узлах исходной расчетной схемы;

  8. Принимать численно равными активное сопротивление и сопротивление постоянному току любого элемента исходной расчетной схемы.

При расчете начального действующего значения периодической составляющей тока трехфазного КЗ в электроустановках напряжением свыше 1 кВ в исходную расчетную схему должны быть введены все синхронные генераторы и компенсаторы, а также синхронные и асинхронные электродвигатели мощностью 100 кВт и более, если между электродвигателями и точкой КЗ отсутствуют токоограничивающие реакторы или силовые трансформаторы.

При расчете начального действующего значения периодической составляющей тока КЗ аналитическим методом по принятой исходной расчетной схеме предварительно составляется эквивалентная схема замещения, в которой асинхронные машины представляются приведенными к базисной ступени напряжения сверхпереходными сопротивлениями и сверхпереходными ЭДС.

Параметры схемы замещения определяются в именованных единицах относительно шин 6 кВ.

Сопротивление системы при заданном токе отключения выключателя в начале ВЛ 110 кВ Iотк.ном = 3,25 кА:


()


Индуктивное сопротивление ВЛ 110 кВ приведённое к шинам 6 кВ.

, ()


Сопротивления обмоток трехобмоточного трансформатора рассчитываются по формулам:

Активное


, ()


где ΔРк – потери в трансформаторе, МВт;

Sном.т – мощность трансформатора, МВА.

Индуктивное:


, ()


где ик.в – напряжение короткого замыкания обмотки ВН, %.

Сверхпереходное индуктивное сопротивление асинхронного электродвигателя определяется по формуле /2, с.120, табл. 2.41/:


, ()


где Sад.ном – номинальная мощность асинхронного электродвигателя, МВА.

Сопротивление постоянному току обмотки статора асинхронного электродвигателя вычисляется по формуле /2, с.125, ф.2.168/:


, ()


где sном – номинальное скольжение асинхронного электродвигателя, %.

Сверхпереходная ЭДС асинхронных электродвигателей в момент, предшествующий КЗ, определяется по формуле:


, ()


где Х2’’АД – сверхпереходное индуктивное сопротивление электродвигателя, Ом;

U(0) – напряжение (фазное) в расчетной точке КЗ к моменту возникновения КЗ, кВ.

I(0) – ток в расчетной точке КЗ к моменту возникновения КЗ, кА.


Сопротивления кабельных линий проложенных кабелем ААВГ 3 (3х 185) с удельными параметрами r0 = 0,159 Ом/км и x0 = 0,073 Ом/км, кабельных линий проложенных кабелем ААШВ 3х150 r0 = 0,206 Ом/км и x0 = 0,074 Ом/км и кабелем ААШВ 3х70 r0 = 0,443 Ом/км и x0 = 0,08 Ом/км.

Влияние комплексной нагрузки на ток КЗ не учитывается, т.к. ток в месте КЗ от той нагрузки составляет менее 5% тока в месте КЗ, определенного без учета нагрузки.

Начальное действующее значение периодической составляющей тока в месте КЗ определяется по формуле:

()

Также начальное действующее значение периодической составляющей тока в месте КЗ определяется по формуле:


()


где U(0) – напряжение (линейное) в расчетной точке КЗ к моменту возникновения КЗ, кВ.


Рис. 2 Схема замещения для расчета токов КЗ в точке К1


Рис. 3. Схема замещения после преобразований


Наибольшее значение апериодической составляющей тока КЗ в общем случае принимается равным амплитуде периодической составляющей тока в начальный момент КЗ /6, с.45, ф.5.9/, т.е.


()


Апериодическая составляющая тока КЗ в произвольный момент времени определяется по формуле /6, с.45, ф.5.10/:


, ()


где Та.эк - постоянная времени затухания апериодической составляющей тока КЗ, о.е.; она определяется по формуле:


, ()


где Хэк - результирующее эквивалентное сопротивление схемы замещения при учете в ней различных элементов расчетной схемы только индуктивными сопротивлениями, т.е. при исключении всех активных сопротивлений, Ом;

Rэк - результирующее эквивалентное сопротивление схемы замещения при исключении из нее всех индуктивных сопротивлений, Ом.

При расчете ударного тока КЗ с целью проверки проводников и электрических аппаратов по условиям КЗ допустимо считать, что амплитуда периодической составляющей тока КЗ в момент наступления ударного тока равна амплитуде этой составляющей в начальный момент КЗ.

Ударный ток определяется по формуле:


, ()


где Куд – ударный коэффициент.

Т.к. отношение Xэк/Rэк > 5, ударный коэффициент допустимо определять по формуле /6, с.48, п.5.4.4./:

()


При определении ударного тока со стороны асинхронных двигателей необходимо учесть изменение периодической составляющей со временем. В приближенных расчетах для определения действующего значения периодической составляющей тока КЗ от асинхронных электродвигателей в произвольный момент времени при радиальной схеме следует применять метод типовых кривых /6, с.50, п.5.5.3./.

Электрическая удаленность точки КЗ от асинхронной машины характеризуется отношением действующего значения периодической составляющей тока электродвигателя в начальный момент КЗ к его номинальному току:


, ()


где Iад.ном номинальный ток асинхронного электродвигателя, кА.

Используя типовые кривые для асинхронного электродвигателя, периодическая составляющая в произвольный момент времени определяется по формуле:


, ()


где γt.ад – параметр, определяемый по типовой кривой по /6, с.55, рис. 5.9/.


Рис. 4. Схема замещения для расчета токов КЗ в точке К2


Рис. 5. Схема замещения после преобразований


Рис. 6. Схема замещения для расчета токов КЗ в точке К3


Рис. 7. Схемы замещения


Расчет действующего значения периодической составляющей тока КЗ в произвольный момент времени от группы асинхронных электродвигателей с учетом влияния удаленного от расчетной точки КЗ источника энергии, связанных с точкой КЗ общим для этого источника и электродвигателей сопротивлением (ветвь КЗ) проводится в следующей последовательности:

вычисляется периодическая составляющая тока от эквивалентного электродвигателя в начальный момент КЗ:

, ()


где Е’’0.ад - начальное значение сверхпереходной ЭДС эквивалентного электродвигателя, кВ;

Ес - ЭДС удаленного источника энергии (системы), кВ;

Z1 – сопротивление со стороны системы, Ом;

Z2 – сопротивление со стороны эквивалентного электродвигателя, Ом;

Zк – общее сопротивление, Ом.

определяется значение величины, характеризующей электрическую удаленность расчетной точки КЗ от эквивалентного электродвигателя;

по найденному значению электрической удаленности на типовой диаграмме /6, с.58, рис. 5.13./ выбирается соответствующая типовая кривая и для заданного момента времени t определяется коэффициент;

с использованием этого коэффициента определяется действующее значение периодической составляющей тока эквивалентного электродвигателя в момент времени t:


()


вычисляется искомое действующее значение периодической составляющей тока в месте КЗ в момент времени t:


()


Рис. 8. Схема замещения для расчета токов КЗ в точке К4


Рис. 9. Схемы замещения


Расчёты токов КЗ в приложении 6.1.

Для ограничения токов КЗ необходимо произвести выбор токоограничивающих реакторов. Выбор параметров реакторов и технико-экономическое обоснование применения их для ограничения токов КЗ в распределительной сети производят при разработке схемы электроснабжения промышленного предприятия. Оптимальное значение расчетного тока КЗ следует определять с учетом экономического фактора (минимум затрат на электрооборудование и проводники) и обеспечения необходимого качества электроэнергии (ограничение отклонений и колебаний напряжения при резкопеременных толчковых нагрузках). Как правило, ток КЗ в сетях промышленных предприятий должен позволять применение КРУ серийного производства.

Расчёты токов КЗ после выбора реактора в приложении 6.2.

Проведём расчёты токов КЗ в вышеуказанных точках и их значения введём в таблицу 5.


Таблица 5 – Значения токов КЗ в различных участках сети



К1

К2

К3

К4

Со стороны питания

Со стороны АД

Со стороны питания

Со стороны АД



До установки реактора

Периодическая составляющая в начальный момент, кА

14,6

0,322

13,01

0,322

13,38

13,18

Апериодическая составляющая в начальный момент, кА

20,65

0,455

18,59

0,456

18,93

18,64

Апериодическая составляющая в момент времени t, кА

3,857

0,146

0,09

0,017

0,05

0,02

Ударный ток, кА

39,12

0,701

28,24

0,662

27,45

26,65

После установки реактора

Периодическая составляющая в начальный момент, кА

8,55

0,322

8,069

0,322

8,364

8,26

Апериодическая составляющая в начальный момент, кА

12,09

0,455

11,41

0,456

11,82

11,68

Апериодическая составляющая в момент времени t, кА

4,53

0,146

0,029

0,701

0,018

0,01

Ударный ток, кА

23,41

0,701

19,08

0,662

18,44

18,11


Выбор высоковольтных выключателей


Выключатели выбираются:

1) По номинальному напряжению выключателя установки


Uуст Uном, ()

2) По номинальному току выключателя установки с учетом возможного увеличения тока в ближайшие годы


Iнорм Iном ; Imax Iном , ()


3) По отключающей способности. Расчет Iп,0 проводится для наиболее тяжелого случая при трехфазном КЗ


Iп,0 Iо,ном , ()


4) По апериодической составляющей тока КЗ в момент расхождения контактов, которая должна быть равна или меньше допустимого значения апериодической составляющей по данным, гарантируемым заводом-изготовителем


, ()


где βном% - номинальное содержание апериодической составляющей, %, определяемое как отношение апериодической составляющей к действующему значению периодической составляющей тока КЗ в момент прекращения соприкосновения дугогасительных контактов выключателя. Принимается по кривой /2, с.155, рис. 2.37/

5) По электродинамической стойкости. Амплитудное значение ударного тока при включении на КЗ должно быть равно или меньше наибольшего пика тока включения выключателя


iу iвкл.наиб , ()


6) По термической стойкости

Bk I2тер tтер , ()


Для проверки выключателя на термическую стойкость необходимо рассчитать тепловой импульс:


, ()


где Вк – тепловой импульс,кА2с;

Iп,0 – действующее значение периодической составляющей начального тока КЗ, кА;

tотк – время отключения, с;

Время отключения находится из выражения:


, ()


где tрз – время действия релейной защиты, с;

tов – время отключения выключателя, с.

Принимают tрз=0,1 с для Uн= 6-20 кВ;

7) По условиям эксплуатации выключателя, которые должны соответствовать требованиям каталога на выключатель.

8) По требуемой механической и коммутационной износостойкости выключателя, которая должна соответствовать данным, гарантируемым каталогом.

9) По требованию к приводу выключателя.

10) По временным параметрам выключателя (время включения и отключения, бестоковой паузы цикла АПВ), которые должны соответствовать требованиям эксплуатации.

11) По требованию ПВН (кривая переходного восстанавливающегося напряжения (ПВН) не должна пересекаться с нормированными кривыми ПВН.

Значения нормированных характеристик собственного переходного восстанавливающегося напряжения, а также значения нормированных (предельных) скоростей восстанавливающегося напряжения для выключателей с Uном до 35 кВ включительно для различных значений отключаемого тока КЗ в сети приведены в /2, с.151, табл.2.60/.

В электрических сетях промпредприятий при проверке отключающей способности выключателей по условиям восстанавливающегося напряжения требуется, чтобы скорость восстанавливающегося напряжения в цепи установки выключателя не превышала предельных нормированных значений, допустимых для данного выключателя.

Скорость восстанавливающегося напряжения может быть определена по формуле:


, ()


где Iп0 – периодическая составляющая отключаемого тока КЗ, кА;

Zл – волновое сопротивление линии, Ом, при одном проводе в фазе равное 450 Ом;

n – число линий, остающихся в работе после отключения КЗ;

Кс – коэффициент, учитывающий влияние емкости в в рассматриваемой сети. Зависит от параметра А равного


, ()


где С – емкость сети, Ф, определяется по формуле:


, ()


где nт – число подключенных трансформаторов;

С0 – емкость кабельных линий, не учитываемых в числе nл;

Х – индуктивное сопротивление, принимаемое при расчете КЗ, Ом.

Вводные выключатели – вакуумные типа ВВТЭ-10-20УХЛ2

Линейные выключатели – ВВТЭ-10-10УХЛ2

Секционные выключатели – вакуумные типа ВВТЭ-10-20УХЛ2


Случайные файлы

Файл
157540.rtf
24206-1.rtf
36010.rtf
42397.rtf
184841.doc