Автоматизация редукционно–охладительной установки (125016)

Посмотреть архив целиком


Федеральное Агентство по Образованию

Федеральное Государственное

Образовательное Учреждение Среднего

Проффесионального Образования


«Дальневосточный Государственный

Межрегиональный Индустриально-

Экономический Колледж»



Специальность: 220301 «Автоматизация технологических процессов и производств»






Автоматизация редукционно–охладительной установки



СОДЕРЖАНИЕ


Введение

1 Общий раздел

1.1 Техническая характеристика предприятия

1.2 Уровень автоматизации предприятия. Обоснование необходимости автоматизации объекта

2 Технологический раздел

2.1 Технология производства. Описание технологического процесса участка производства

2.2 Выбор параметров, подлежащих контролю и регулированию

3 Специальный раздел

3.1 Обоснование выбора первичных устройств и приборов контроля

3.2 Свойство системы регулирования и выбор регуляторов

3.3 Выбор средств автоматизации, электроаппаратуры

3.4 Описание работы схем автоматического контроля и регулирования

3.5 Выполнение кабельных (импульсных) трасс

3.6 Выбор щита автоматизации

3.7 Описание компоновки средств контроля и регулирования на щите

3.8 Таблица соединений электрических проводок в щите

3.9 Расчётный раздел

3.9.1 Расчёт и выбор аппаратов и средств защиты

3.9.2 Расчёт сечения кабеля, проводов и выбор их типов

3.9.3 Расчёт специальных устройств САУ

4 Техника безопасности и противопожарная техника

4.1 Мероприятия по технике безопасности в условиях эксплуатации автоматических устройств

4.2 Противопожарные мероприятия на данном предприятии

5 Экономическая часть

5.1 Расчёт капитальных затрат на автоматизацию

5.2 Расчёт себестоимости продукции до и после автоматизации

5.3 Экономические обоснования автоматизации

5.4 Сводные технико–экономические показатели

Список используемых источников



ВВЕДЕНИЕ


Значение автоматизации в промышленности

В современном промышленном производстве все большее значение приобретает автоматизация. Усложняется оборудование и технологические процессы, повышаются требования к качеству и надёжности выпускаемой продукции. Управление технологическими комплексами вообще невозможно без средств автоматизации. Она способствует росту производительности труда.

Автоматизация производства – одно из важнейших направлений научно технического процесса, способных коренным образом преобразовать рабочие места, сделать труд рабочих более производительным, и менее травмоопасным.

Автоматика и автоматизация производственных процессов в настоящее время базируется на элементной базе, содержащей электрические, электромеханические, магнитные, гидравлические и другие средства автоматизации. В последние десятилетия особенно интенсивное развитие получили электронные устройства автоматики

Применительно к задачам автоматизации производственных процессов автоматизированное управление осуществляется с помощью автоматизированных систем управления технологическими процессами, в которых состояние технологического процесса и технологического объекта в целом анализируется с помощью ЭВМ.

Высшая форма автоматизации в настоящее время реализуется с помощью гибких производственных систем, создающих реальные предпосылки для перехода к безлюдной технологии, для существенного повышения эффективности современного промышленного производства. Гибкая производственная система призвана обеспечить комплексную автоматизацию всего производственного процесса, повысить производительность труда и качество продукции.


1. ОБЩИЙ РАЗДЕЛ


1.1 Техническая характеристика предприятия


Хабаровская теплоэлектроцентраль №1 расположена в южной части города Хабаровска, входит в объединенную энергетическую систему Востока, снабжающею электроэнергией Хабаровский, энергорайон и теплотой город Хабаровск.

Электростанция сооружалась в четыре этапа, первый турбоагрегат мощностью 25 тыс. кВт введен в эксплуатацию 28 сентября 1954 г., последний - мощностью 100 тыс. кВт в 1972 г.

До пуска Хабаровской ТЭЦ – 1 в городе работало 40 мало – экономичных ведомственных электростанций, в том числе дизельные и локомобильные суммарной мощностью 18 тыс. кВт.

На ТЭЦ установлено 16 котельных агрегатов высокого давления с параметрами 100 – 140 ата, 510 – 540 – 560оС девять турбоагрегатов мощностью 25 – 60 – 100 МВт, с теплофекациоными и производственным оборотом пара и три водогрейных котла ПТВМ – 100. Длина главного корпуса составляет 455 метров. Тепловая схема с поперечными связями по пару питательной воды. Имеются две топливо – подачи, производительностью 400 т/час для подпитки энергетических котельных агрегатов, водоочистные сооружения подпитки теплосети производительностью 3000 т/час.

В период эксплуатации на ТЭЦ проведена большая работа по совершенствованию технологической схемы автоматизации производственного процесса и механизации трудоемких работ, внедрено более 700 мероприятий по повышению надежности и экономичности работы ТЭЦ. Удельный расход условного топлива на отпущенный кВт час снижен на 356.7 грамм в сравнении с 1956 годом, и составил в 1983 году 233.1 г/кВтч, на тепло уменьшен с 189.9 кг/Гкал до 180.8 кг/Гкал.

Первый миллион кВтч электроэнергии ТЭЦ выработала 4 октября 1954 года. За весь период работы ТЭЦ на 1 января 1984 г выработано 56737943 тыс. кВтч электроэнергии и отпущено потребителям тепла 130938 тыс. Гкал.

Введены в эксплуатацию:

I Турбоагрегат ст.№1 - 28 сентября 1954г.

II Турбоагрегат ст.№ 2 – в 1955 г

III Турбоагрегат ст.№ 3 – в 1956 г.

IV Турбоагрегат ст.№ 4 – в 1958 г.

V Турбоагрегат ст.№ 5 – в 1958 г.

VI Турбоагрегат ст.№ 6 – в 1964 г.

VII Турбоагрегат ст.№ 7 – в 1967 г.

VIII Турбоагрегат ст.№ 8 – в 1969 г.

Удельная численность эксплуатационного персонала на 1000 кВт установленной мощности за период 1956 г до 1983 снижена с 10 человек до 1.8 человек.

На ТЭЦ постоянно проводится работа по модернизации и реконструкции оборудования и совершенствованию технологических процессов. Реконструирована схема газо-масляного уплотнения пяти генераторов, мощность генераторов увеличена на 17 мВт, модернизированы две турбины с частичной заменой проточной части и увеличением электрической мощности на 17% теплофикационного и производственного отбора пара; выполнена схема использования низко-потенциального тепла турбин. Рационализаторы ТЭЦ только за последние 10 лет подали 1211 рационализаторских предложений, внедрение которых позволило получит экономический эффект 789.4 тыс. рублей с экономить 4063 тут. За 30 лет создано довольно обширная сеть социально – бытовых и культурных учреждений. ТЭЦ имеет два общежития, базу отдыха в п. Бычиха на берегу Амура, дом культуры, пионерский лагерь и четыре детских дошкольных учреждения, стадион. На предприятии действует столовая, медицинский пункт, физиокабинет.

1.2 Уровень автоматизации предприятия. Основания необходимости автоматизации объекта


Автоматизация – процесс, при котором функции управления и контроля осуществляются методами и средствами автоматики. В применении к любому производству автоматизация характеризуется освобождением человека от непосредственного выполнения функций управления производственными процессами и передачей этих функций автоматическим устройствам. По степени автоматизации производства различают частичную, комплексную и полную автоматизацию.

Частичная автоматизация – это автоматическое выполнение отдельных производственных операций, осуществляемое в тех случаях, когда определённые технологические процессы вследствие своей сложности или быстродействия невыполнимы для человека. Функции человека при частичной автоматизации определяется технологическим процессом и сводится к участию в производственных операциях, контроле и управления. Частично автоматизируется, как правило, действующее производственное оборудование, при чём наиболее эффективно автоматизировать технологический процесс, который сравнительно легко можно функционально выделить из общего производства.

Комплексная автоматизация – автоматическое выполнение всех основных производственных операций участка, цеха, завода, электростанции и.т.д. как единого взаимосвязанного комплекса. Функции человека при комплексной автоматизации ограничиваются контролем и общим управлением. При комплексной автоматизации отдельные автоматические регуляторы и программные устройства, должны быть связаны между собой и образовывать единую систему управления.

Полная автоматизация – высшая ступень, при которой автоматизируются все основные и вспомогательные участки производства, включая систему управления и контроля. Управление и контроль автоматически с помощью вычислительных машин или специализированных автоматических устройств. Функции человека при полной автоматизации сводятся к наблюдению за работой оборудования и устранению возникающих неисправностей.

Хабаровская ТЭЦ 1 по уровню автоматизации относится к частичной.

Все процессы, которые человек не может выполнить (определить температуры пара, давления пара, расход пара и.т.д.) выполняются автоматическими устройствами, функции человека при этом сводятся к наблюдению, контролем и корректированию параметров технологического процесса.


2 ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ


2.1 Технология производства. Описание технологического процесса участка производства


Редукционно–охладительная установка (РОУ) служит для понижения давления и температуры острого пара, вырабатываемого котлоагрегатами. С помощью РОУ резервируются промышленные и теплофикационные отборы паровых турбин, осуществляется связь между общими паропроводами паровых котлов высокого и среднего давления, редуцируется пар низких параметров во время растопки котлоагрегатов. Так на Хабаровской ТЭЦ 1 имеется пять РОУ 100/10 – 13 ата и три РОУ 140/10 – 16 ата, пар от которых подаётся в промколлектор. С промколлектора пар поступает на производство и на пиковые бойлера. РОУ 100/35 ата № 1, 2 служат для снабжения паром МЖК. С атмосферной РОУ 100/1,2 – 2,5 ата пар подаётся в теплофикационный коллектор. С теплофикационного коллектора пар поступает в основные бойлера и ПСГ № 1, 2. Растопочная РОУ 100/1,2 – 2,5 ата № 1 используется при растопке котлов ст. №1 – 8. Растопочные РОУ 140/1,2 – 2,5 ата № 2, 3 используются при растопке котлов ст. № 9 – 16. Пар с этих РОУ поступает в теплофикационный коллектор.

Для автоматизации выбирается РОУ 100/35 служащая для подачи пара на МЖК. Острый пар подаётся с температурой лежащей в пределах 280 С – 320 С и давлением лежащим в пределах 32 кгс/см² – 35 кгс/см². Пределы температуры и давления зависят от того какими нужны потребителю для нормального хода технологического процесса. Острый пар проходя через дроссельный клапан шиберного типа и решётки в пароохладителе дросселируется. Многоступенчатое дросселирование (в клапане и решётках) снижает уровень шума при расширении пара. Расход пара изменяется с помощью дроссельного клапана, аналогичного по конструкции регулирующему клапану. В пароохладитель впрыскивается вода через форсунки, за счёт её испарения происходит охлаждение пара. Питательная вода с давлением 35 кгс/см подаётся от питательных насосов (ЭПН). Регулятор получает сигнал по температуре или давлению редуцированного пара от термопары или Сапфира. При повышении температуры или давления от заданного значения, исполнительный механизм перемещает регулирующий клапан в сторону открытия до тех пор, пока температура или давление редуцированного пара не станет равной заданному значению. При понижении температуры или давления редуцированного пара, регулирующий клапан перемещается в сторону закрытия, до тех пор пока температура или давление редуцированного пара не станет равным заданному значению. Регулирование расхода воды осуществляется с помощью клапана постоянного расхода, независимо от фактической производительности редукционно–охладительной установки к клапану подводится постоянное количество воды. В клапане поток разветвляется на два потока, один из которых поступает на впрыск, а второй на слив. Перераспределение воды между впрыском и сливом осуществляется за счёт перемещения распределительного клапана, необходимость такого устройства поясняется примером: в РОУ с начальным давлением р1 = 12,75 кгс/см² и конечным давлением р2 = 1,27 кгс/см² вода на впрыск подаётся от питательного насоса и имеет давление рп.н. = 18 кгс/см². Фактически перед клапаном давление воды должно составлять рв = 3 кгс/см² ( с учётом потерь давления в форсунках). Избыток давления р = рп.н. – рв = 15 кгс/см² теряется в дроссельном устройстве. Чтобы перепад давления на дросселе был одинаковым и не зависел от производительности редукционно–охладительной установки, необходимо иметь постоянный расход воды через дроссельное устройство. Именно это и достигается при установке клапана постоянного расхода.

Редукционно–охладительная установка устанавливается для растопки котла, резервирования производственных отборов турбин и при отсутствии других источников пара требуемых параметров. В блочных схемах редукционно–охладительная установка используется не только при пусках блока, но и при сбросах нагрузки. Редукционно–охладительная установка с быстрым включением в работу называются быстро включающимися.


2.2 Выбор параметров, подлежащих контролю и регулированию


Основная задача управления процесса снижения давления и температуры состоит в стабилизации режима работы котла и турбин при оптимизации производительности котла и турбин и расхода топливно-энергетических ресурсов. Процесс снижения давления и температуры подвержен влиянию многих факторов. Главными являются: давление пара, температура пара, расход пара. Контроль давления острого и редуцированного пара, а также регулирование давления редуцированного пара необходимы, так как при изменении этих параметров может привести к нарушению технологического процесса и привести к аварийной ситуации. Контроль температуры острого и редуцированного пара, а также регулирование температуры редуцированного пара необходимы, так как при изменении этих параметров может привести к нарушению технологического процесса. Контроль расхода редуцированного пара необходим, для норм расхода потребителя.


Таблица 1-Перечень технологических параметров подлежащих контролю и регулированию

Наименование измеряемой

величин

Наименование значения параметра

Тип преобразователя

Место отбора

Среда

воздействия

Регулирование температуры редуцированного пара

280 - 320˚С

Термопара ТХК

Паропровод

Пар

Регулирование давления редуцированного пара

32 - 35 кгс/см²

Сапфир 22 М-ДИ

Паропровод

Пар

Контроль давления острого пара

100 кгс/см²

Сапфир 22 М-ДИ

Паропровод

Пар

Контроль температуры острого пара

535˚С

Термопара ТХА

Паропровод

Пар

Контроль давления редуцированного пара

32 - 35 кгс/см²

Сапфир 22 М-ДИ

Паропровод

Пар

Контроль расхода редуцированного пара

16 т/ч

Сужающее устройство ДК-100

Диффманометр ДМ 3583М

Паропровод

Пар

Контроль температуры редуцированного пара

280 - 320˚С

Термопара ТХК

Паропровод

Пар



3. СПЕЦИАЛЬНЫЙ РАЗДЕЛ


3.1 Обоснование выбора первичных устройств и приборов контроля


3.1.1 Контроль давления острого пара

В качестве первичного прибора для контроля давления острого пара используется тензопреобразователь «Сапфир 22 М-ДИ». Тензопреобразователь предназначен для измерения давления и преобразования его в унифицированный токовый сигнал. Сапфир имеет чувствительную металлическую мембрану, сверху которой припаяна сапфировая мембрана на поверхности которой размещены тензорезисторы, образующие мостовую измерительную схему, напряжение разбаланса подаётся на вход усилителя. При деформации двухслойной мембраны изменяется сопротивление тензорезисторов.


Таблица 2-Техническая характеристика «Сапфир 22 М-ДИ»

Параметры прибора

Величина прибора

Предел измерения, кгс/см²

0 - 150

Питание, В

36

Класс точности

1,5

Условия эксплуатации :


Влажность, %

30 - 80

Температура окружающей среды, ˚С

20±2

Масса, кг

2,5


В качестве вторичного прибора используется компенсатор самопишущий с унифицированным сигналом КСУ-1. Предназначен для измерения и записи давления, значение которого преобразовано в электрический унифицированный сигнал постоянного тока 4 – 20 mA, конструктивно прибор выполнен из отдельных модулей и блоков (модуль измерительной мостовой схемы, модуль реохорда, блок питания) соединённые между собой проводами.


Таблица 3-Техническая характеристика КСУ – 1

Параметры прибора

Величина прибора

Предел измерения, кгс/см²

0 - 150

Питание, В

220

Потребляемая мощность, Вт

30

Класс точности

1

Условия эксплуатации :


Влажность, %

30 - 80

Температура окружающей среды, ˚С

20±2

Масса, кг

не более 8

Габариты, мм

200х160х420


3.1.2 Контроль температуры острого пара

В качестве первичного прибора для контроля температуры острого пара используется термопара ТХК. Принцип работы основан на возникновение электродвижущей силы (ТЭДС) в цепи, составленной из двух разнородных проводников, при неравенстве температур в местах соединения концов проводников. Возникновение ТЭДС связано с наличием в металлах свободных электронов. Так как плотность свободных электронов в различных металлических электродах неодинакова, электроны диффундируют из электрода с большей плотностью свободных электронов в электрод с меньшей плотностью свободных электронов. Диффузия свободных электронов будет тем больше, чем больше температура спаев.


Таблица 4-Техническая характеристика термопары ТХА

Параметры прибора

Величина прибора

Предел измерения, ˚С

-50…600

Градуировка

ХА

Конструкция головки

Защитная арматура без штуцера материал сталь ОХВ17. Материал головки алюминиевый сплав.

Длина монтажной части, мм

300 - 2000

Масса, кг

3 - 5


В качестве вторичного прибора используется компенсатор самопишущий с потенциометрической схемой КСП-2. Принцип действия основан на развитии термопарой ТЭДС которая компенсируется равным по величине, но обратным по знаку напряжения. Компенсатор состоит: 1 контур источник постоянного тока, резистор, сопротивление и реохорд; 2 контур нормальный элемент, нуль прибор; 3 контур термопара, нуль прибор, реохорд.


Таблица 5-Техническая характеристика КСП-2

Параметры прибора

Величина прибора

Предел измерения, ˚С

0 - 600

Градуировка

ХА

Класс точности

0,5

Питание, В

220

Параметры прибора

Величина прибора

Условия эксплуатации:


Влажность, %

30 - 80

Температура окружающей среды

20±2

Масса, кг

не более 10

Габариты, мм

320х240х400


3.1.3 Контроль давления редуцированного пара

В качестве первичного прибора для контроля давления редуцированного пара используется тензопреобразователь «Сапфир 22 М-ДИ», со шкалой от 0 до 50 кгс/см², описание тензопреобразователя находится в пункте 3.1.1. Описание технических характеристик прибора находится в таблице 2.

В качестве вторичного прибора используется компенсатор самопишущий с унифицированным сигналом КСУ-1, со шкалой от 0 до 50 кгс/см², описание компенсатора находится в пункте 3.1.1. Описание технических характеристик прибора находится в таблице 3.


3.1.4 Контроль расхода редуцированного пара

В качестве первичного прибора для контроля расхода редуцированного пара применяется сужающее устройство диафрагма камерная ДК-100 на которой создаётся перепад давления. Принцип действия основан на измерении разности до и после сужающего устройства и по этой разности определяется расход пара, проходящего по паропроводу.


Таблица 6 Техническая характеристика сужающего устройства ДК 100

Параметры прибора

Величина прибора

Условное давление, кгс/см²

150

Внешний диаметр, мм

50

Внутренний диаметр, мм

35

Материал

Сталь Х17


Уравнительные сосуды предназначены для поддержания постоянства уровней конденсата в обеих импульсных трубках. Применяются для измерения расходов жидких, парообразных сред с температурой – 350 С. Нужны для поддержания равенства уровня конденсата в импульсных трубках. Обозначаются СКМ – малые, предназначены для работы с сильфонными, мембранными дифманометрами. Цифры в обозначении указывают на допустимое условное давление.


Таблица 7- Техническая характеристика СКМ–150-5

Параметры прибора

Величина прибора

Наружный диаметр, мм

13

Внутренний диаметр, мм

10

Толщина, мм

4

Давление, кгс/см²

150

Тип

СКМ-150-5


В комплекте с сужающим устройством работает дифманометр, который присоединяется к нему при помощи импульсных трубок, которые предназначены для передачи давления от сужающего устройства к дифманометру.

Таблица 8 - Техническая характеристика импульсных трубок

Параметры прибора

Величина прибора

Материал

Сталь Х17

Толщина стенки, мм

2

Диаметр, мм

8


В комплекте с сужающим устройством работает дифманометр – расходомер типа ДМ 3583М применяемый для непрерывного измерения расхода пара по перепаду давления в сужающем устройстве. Дифманометр имеет встроенный дифференциально - трансформаторный преобразователь. Дифманометры, измеряющие разности давлений до и после сужающего устройства, и по этой разности, определяющие расход газа, пара или жидкости называются дифманометрами – расходомерами.


Таблица 9 - Техническая характеристика дифманометра ДМ 3583М

Параметры прибора

Величина прибора

Диапазон измерения, кгс/см²

0 - 150

Питание, В

220

Потребляемая мощность, ВА

8

Класс точности

1,5

Масса, кг

18


В качестве вторичного прибора используется компенсатор самопишущий с дифференциально–трансформаторным преобразователем КСД-1, который предназначен для автоматического контроля расхода. Представляющий собой показывающий прибор с регистрацией на ленточной диаграмме. Состоит из ряда унифицированных блоков и модулей. Отдельные блоки соединяются при помощи штепсельных разъёмов.


Таблица 10 - Техническая характеристика КСД-1

Параметры прибора

Величина прибора

Диапазон измерения, т/ч

0 - 20

Питание, В

220

Класс точности

1

Потребляемая мощность, ВА

35

Условия эксплуатации:


Влажность, %

30 - 80

Температура окружающей среды, ˚С

20±2

Масса. кг

не более 8

Габариты, мм

200х160х420


3.1.5 Контроль температуры редуцированного пара

В качестве первичного прибора для контроля температуры редуцированного пара используется термопара ТХК, описание термопреобразователя находится в пункте 3.1.2. Описание технических характеристик прибора находится в таблице 4.

В качестве вторичного прибора используется компенсатор самопишущий с потенциометрической схемой КСП-2, со шкалой от 0 до 400˚С, описание компенсатора находится в пункте 3.1.2. Описание технических характеристик прибора находится в таблице 5.


3.2 Свойство системы регулирования и выбор регуляторов


Эффективность систем автоматического регулирования (САР) зависит от правильного выбора автоматического регулятора.

Приступая к проектированию САР , необходимо знать особенности технологического процесса, устройство, возмущения и управляющие воздействия, с помощью которых можно изменить значения регулируемых величин.


3.2.1 Объект регулирования – одноёмкостный, регулируемая величина–температура

Необходимые показатели качества регулирования:

- Максимальное динамическое отклонения регулируемой величины.

t, ˚С = 20˚С

- Время регулирования tp = 10с

- Система регулирования должна обеспечить апериодический переходный процесс

Для выбора автоматического регулятора необходимо знать статические и динамические характеристики объекта. Статической характеристикой объекта называется зависимость регулируемой величины от регулирующего воздействия в различных установившихся режимах.

Рисунок 1- Статическая характеристика

Рисунок 2 - Статическая характеристика


τ=2 с,

τ/Т= 2/2,5=0,8 ,

К об.=∆t/∆М=20/5=4


На основании отклонения τ/Т=0,8 принимается регулятор непрерывного действия.

По графикам характеризующим процесс выбора закона управления по динамическим параметрам определяем динамический коэффициент Rд который характеризует степень воздействия регулятора на стабилизацию технологического параметра.

При τ/Т=0,8 по таблицам определяем Rд и рассчитываем расчётное время регулирования.

Расчётное время регулирования не превышает требуемого времени, следовательно для данного объекта управления применяется пропорциональный закон управления имеющий Rд =0,85 и tp/ τ =8 (с) т.к он обеспечивает оптимальное время 10 сек.

Расчет параметров настройки Кр по приближённой формуле


Кр = 0,3*Т/Коб* τ =0,3*2,5/4*2 =0,09


Кр проверяется по графическим зависимостям


Кр=Кс/Коб =0,35/4 =0,087


С помощью уравнения проверяется устойчивость системы управления с использованием критериев Гурвица и Михайлова.

Система автоматического управления описана дифференциальным уравнением.


Критерий Гурвица


35р3+14р2+18,5р+1=0

а1=35а2=14 а3=18,5а4=1

11=35>0,

212+0*а3=35*14=490>0,

3123+0*а1*0+а4*0*а3+0*а2*0+а4113*0*а3=35*14*18,5=9065>0

Согласно условию критерия Гурвица система устойчива.

Критерий устойчивости Михайлова.


35р3+14р2+18,5р+1=0,

p= ,

35+14-18,5+1=0,

-353-142+18,5+1=0


Исходное уравнение делится на два равенства действительное и мнимое.


U(ω)=-142+1=0,

V(ω)=-353-18,5=0


Придавая ω значение ω=0; 0,25; 0,5; 0,75; 1; 1,5; 2; результаты расчета действительной и мнимой частей сводится в таблицу 11.


Таблица 11 – Таблица действительных и мнимых значений

ω

0

0,25

0,5

0,75

1

1,5

2

U(ω)

1

-0,875

-2,5

-6,875

-13

-20,875

-55

V(ω)

0

5,165

4,875

0,885

-16,25

-45,714

-243

Рисунок 3 -Гадогроф


Согласно условию Михайлова система устойчива


3.2.2 Объект регулирования–одноёмкостный, регулируемая величина–давление

Необходимые показатели качества регулирования:

- Максимальное динамическое отклонения регулируемой величины.

t, ˚С = 2 кгс/см²

- Время регулирования tp = 15с

- Система регулирования должна обеспечить апериодический переходный процесс

Рисунок 4 - Статическая характеристика


Рисунок 5 - Кривая разгона


τ=1 с,

τ/Т= 1/2,6=0,38 ,

К об.=∆Р/∆М=2/5=0,4


На основании отклонения τ/Т=0,38 принимается регулятор непрерывного действия.

По графикам характеризующим процесс выбора закона управления по динамическим параметрам определяем динамический коэффициент Rд который характеризует степень воздействия регулятора на стабилизацию технологического параметра.

При τ/Т=0,38 по таблицам определяем Rд и рассчитываем расчётное время регулирования.

Расчётное время регулирования не превышает требуемого времени, следовательно для данного объекта управления применяется пропорционально-интегральный закон управления имеющий Rд =0,54 и tp/ τ =8 (с) т.к он обеспечивает оптимальное время 10 сек.

Расчет параметров настройки Кр,Ти по приближённым формулам


Кр = 0,6*Т/Коб* τ =0,6*2,6/0,4*1 =3,9,

Ти=0,8* τ+0,5*Т=0,8*1+0,5*2,6=2,1


Кр,Ти проверяется по графическим зависимостям


Кр=Кс/Коб =1,4/0,4 =3,5,

Ти=(Ти/ τ)* τ=2,3*1=2,3


В соответствии с выборным законом управления выбирается регулирующий прибор «Ремиконт Р-130».

Общие сведения прибора.

Микроконтроллер «Ремиконт Р-130» обладает полным набором функций, необходимых для современного цифрового регулятора.

«Ремиконт Р-130» предназначен для формирования управляющего сигнала по законам регулирования П, ПИ.

В настоящее время контроллер Ремиконт – 130 выпускается со следующими новшествами:

1) Блок -шлюза поставляется с новым модулем процессора ПРЦ; полностью взаимозаменяем с ранее выпускаемым модулем ПРЦ – новой версии программного обеспечения, позволяющий:

-устранять причины «зависания» блока-шлюза, возникающие при помещении в абонентском канале;

- устанавливать скорость обмена поинтерфейной связи абонентского канала на 4,8 и 9,6 Кбит/с.

2) Микросхемы памяти установлены в специальные высоконадежные, позволяющие производить их оперативность.

3) Для сохранения информации, при отключении питания вместо аккумулятора типа Д-0,06 на модуле ПРЦ-10М1 установлена специальная импортная литиевая батарея, со сроком службы и времени хранения информации до 10 лет и более.

4) Устранены причины сбоя конфигурации программ пользователя, хранящихся в ОЗУ, при выключении питания и длительном хранении.

5) Внедрен техпроцесс для проверки изделий при предельных значениях климатических условий эксплуатации.


Таблица 12 - Техническая характеристика Ремиконт Р-130

Параметры прибора

Величина прибора

Тип

Ремиконт Р-130

Унифицированный аналоговый сигнал, mА

420

Напряжение питания, В

220 – 240

Выходной сигнал с термопары

ТХК

Влажность, %

До 80

Температура, ˚С

от 1 до 45

Время цикла, сек

от 0,2 до 2


С помощью уравнения проверяется устойчивость системы управления с использованием критериев Гурвица и Михайлова.

Система автоматического управления описана дифференциальным уравнением.

Критерий устойчивости Михайлова.


3,5р3+5,5р2+17,6р+7=0,

p= ,

3,5+5,5+17,6+7=0,

-3,53-5,52+17,6+7=0


Исходное уравнение делится на два равенства действительное и мнимое.

U(ω)=-5,52+7=0,

V(ω)=-3,53-17,6=0


Придавая ω значение ω=0; 0,25; 0,5; 1; 1,5; 2; 3; результаты расчета действительной и мнимой частей сводится в таблицу 13.


Таблица 13 - Таблица действительных и мнимых значений

ω

0

0,25

0,5

1

1,5

2

3

U(ω)

7

6,65

5,62

1,5

-5,37

-15

-42,5

V(ω)

0

4,35

8,37

14,1

14,59

7,2

-41,7






Рисунок -Годограф


Согласно условию Михайлова система устойчива


3.3 Выбор средств автоматизации, электроаппаратуры


3.3.1 Автоматический выключатель

Автоматический выключатель используется в качестве защиты аппаратов от коротких замыканий и перегрузок, а также для нечастых оперативных отключений электрических цепей и отдельных электроприемников при нормальных режимах работы. Таким образом, автоматы выполняют функции рубильников, предохранителей.


Таблица 14 - Техническая характеристика АП50-2Т

Параметры прибора

Величина прибора

Номинальный ток расцепления, А

10

Кратность уставки электромагнитного расцепителя номинальному току расцепления, А

3,5

Число блокировочных контактов

Два переключающих (2П)


3.3.2 Ключ выбора режима

В качестве ключа для выбора режима используется переключатель ПВ1-10. Переключатель состоит из валика 1, на котором насажена секция для переключения цепей. Число цепей определяется числом подводимых к переключателю электрических линий. Секции разделяют перегородками 2 из пластмассы, а под ними по всей длине переключателя положена рейка 3 на которой неподвижные контакты 5 проходящие через все платы. Поворотом рукоятки изменяют положение кулачковых шайб и следовательно контактов 3 и 4. подвижные контакты 4 положены по всей длине оси 7, 5.


Рисунок 6 - Схема ключа выбора режима ПВ1-10


Таблица 15 - Техническая характеристика переключателя ПВ1-10

Параметры прибора

Величина прибора

Напряжение питания, В

220

Частота, Гц

50

Номинальный то контактов, А

6

Число коммутированных цепей, шт.

4-2

Фиксация коммутируемых цепей число независимых

10º-120º

Коммутируемых цепей

1-4


3.3.3 Блок ручного управления БРУ-22

Блок ручного управления рассчитан на перемещения в автоматизированных системах управлениях техническими процессами и предназначен для переключения цепей управления исполнительными устройствами, индикации положения цепей управления.


Таблица 16 - Техническая характеристика БРУ-22

Параметры прибора

Величина прибора

Напряжение питания, В

220

Параметры прибора

Величина прибора

Частота, Гц

50

Температура окружающей среды, ºС

+5-+50

Влажность, %

30-80

Потребляемая мощность, ВА

2,5

Масса, кг

0,5