Технология пиролиза углеводородного сырья в трубчатых печах (124570)

Посмотреть архив целиком

Реферат


Дипломный проект из 106 страниц печатного текста, содержит 24 таблицы, 2 рисунка. Выполнено листов демонстрационного материала.

ПИРОЛИЗ, НИЗШИЕ ОЛЕФИНЫ, ТРУБЧАТАЯ ПЕЧЬ, ЗМЕЕВИК, ПИРОГАЗ.

Объектом исследования данной работы является проведение процесса пиролиза в трубчатых печах.

Дипломный проект состоит из следующих разделов:

- литературный обзор. Здесь рассматриваются модификации процесса пиролиза, теоретические основы термического процесса;

- технология производства. Приводится обоснование метода и технологии производства, расчет материального и теплового балансов производства, расчет основного и вспомогательного оборудования: трубчатой печи, закалочно-испарительного аппарата;

- автоматический контроль и регулирование. Осуществлен выбор средств контроля, регулирования и автоматизации;

- безопасность и экологичность проекта. Приведена характеристика процесса по взрывопожароопасности и вредности, мероприятия, ограничивающие вредное воздействие на человека и окружающую среду.



Содержание


Введение

1. Литературный обзор

1.1 Кинетика и катализ

1.1.1 Теоретические основы термического пиролиза

1.1.2 Теоретические основы каталитического пиролиза

1.2 Характеристика модификаций процесса пиролиза

1.2.1 Термический гомогенный пиролиз

1.2.2 Пиролиз в присутствии гетерогенныхкатализаторов

1.2.3 Пиролиз в присутствии гомогенных инициаторов

1.2.4 Пиролиз углеводородного сырья в расплавленных средах

1.2.5 Высокотемпературный пиролиз с газообразным теплоносителем

1.2.6 Термоконтактные процессы пиролиза

2. Технология производства

2.1 Обоснование способа и технологии

2.2 Экологическое обоснование производства

2.3 Технологическая схема производства

3. Исходные данные для проектирования

4. Технологический расчет

4.1 Материальный баланс

4.1.1 Материальный баланс реактора

4.1.2 Материальный баланс от аппарата к аппарату

4.1.3 Материальный баланс отделения пиролиза

4.1.4 Материальный баланс в расчете на одну печь

4.2 Тепловой баланс печи

4.2.1 Узел смешения. Определение температуры сырья на входе в печь

4.2.2 Определение полезной тепловой нагрузки печи

4.2.3 Определение затрат тепла в радиационной и конвекционной камерах

4.2.4 Расчет процесса горения топлива

4.2.5 Тепловой баланс печи

4.2.6 Тепловой баланс реактора

4.3 Расчет основного оборудования

4.3.1 Расчет для действующего типа змеевика

4.3.2 Расчет закалочного аппарата

4.4 Расчет камеры радиации для проектируемого змеевика

4.4.1 Теплонапряженность поверхности нагрева радиационных труб, кВт/м2

4.4.2 Реакционный объем змеевика, м3

4.4.3 Необходимое количество змеевиков такого типа для замены

5. Эксплуатация производства

5.1 Нормы технологического режима

5.2 Пуск и остановка установки пиролиза

5.3 Причины и особенности аварийной остановки

5.3.1 Действия персонала во время аварии

5.3.1 Действия персонала во время аварии

5.3.2 Внезапное прекращение подачи пирогаза - останов компрессора

5.3.3 Отсутствие электроэнергии

5.3.4 Отсутствие воздуха КИП и электроэнергии на щит КИП

5.3.5 Отсутствие пара и воды

5.3.6 Прорыв газа, пожар на объекте

5.4 Лабораторный контроль производства

6. Автоматический контроль и регулирование

6.1 Выбор и обоснование параметров контроля и регулирования

6.1.1 Поддержание постоянного уровня

6.1.2 Регулирование расхода

6.1.3 Поддержание температуры

6.1.4 Поддержание давления

6.2 Выбор средств контроля и регулирования

6.2.1 Первичные преобразователи

6.2.2 Промежуточные преобразователи

6.2.3 Вторичные приборы и регуляторы

6.2.4 Исполнительные механизмы

6.3 Описание системы контроля регулирования, сигнализации и блокировки

7. Безопасность и экологичность проекта

7.1 Характеристика производственной среды и анализ опасностей и производственных вредностей

7.1.1 Основные опасности производства

7.1.2 Взрывопожароопасные, токсичные свойства сырья, полупродуктов, готовой продукции и отходов производства

7.2 Мероприятия по обеспечению безопасности производства

7.2.1 Действия, направленные на предотвращение аварийных ситуаций

7.2.2 Пожарная и взрывобезопасность

7.2.3 Электробезопасность

7.3 Анализ надежности защиты рабочих, служащих и инженерно-технического комплекса в ЧС

7.3.1 Методы и средства защиты работающих от производственных опасностей

7.3.2 Индивидуальные и коллективные средства защиты работающих, тушения возможных загораний

7.3.3 Причины аварийных ситуаций и способы обезвреживания и нейтрализации продуктов производства при разливах и авариях

7.4 Мероприятия по охране окружающей природной среды

Заключение

Список использованных источников



Введение


В настоящее время нефтехимический потенциал промышленно развитых государств определяется объемами производства низших олефинов. Основным источником их производства служит процесс термического пиролиза углеводородов с водяным паром. Этот процесс представляет собой модификацию термического крекинга нефтепродуктов, развитие которого с применением трубчатых печей началось в 10-20 годах на нефтеперерабатывающих заводах США. Первые промышленные синтезы современной нефтехимии были осуществлены на основе этилена и пропилена, выделенных из газов крекинга. Именно на установках пиролиза получают сегодня первичные продукты, обеспечивающие сырьем производства пластических масс, синтетических смол, каучуков и волокон.

В нашей стране накоплен значительный опыт в области эксплуатации отечественных и зарубежных установок, разработки и усвоение новых технических решений по системам пиролиза различных углеводородов.

Пиролиз в трубчатых печах является основным процессом производства этилена в России. Для повышения его эффективности намечено создание целого ряда мощных (300 тыс.т. этилена в год) установок, способных перерабатывать после соответствующей подготовки широкий ассортимент углеводородного сырья, включая керосиновые и газойлевые фракции, предусматривается проведение процесса в жестком режиме – при высоких температурах (до 860оС) и скоростях подачи сырья.



1. Литературный обзор


Развитие химической промышленности за последние несколько десятилетий характеризуется увеличением производства продуктов органического синтеза. В настоящее время четыре углеводорода определяют в основном технический прогресс нефтехимической промышленности: этилен, пропилен, бутадиен, и бензол. Основным источником их производства служит процесс термического пиролиза углеводородов.

Первые установки термического пиролиза в трубчатых печах, специально предназначенные для производства низших олефинов, были сооружены в США в 30-х гг.; в странах Западной Европы, Японии и России они появились в 40-50-х гг.

В нашей стране накоплен значительный опыт в области эксплуатации отечественных и зарубежных установок, разработки и освоения новых технических решений по системах пиролиза углеводородов.

В последние 20 лет наибольшее распространение в мировой нефтехимии получил процесс термического пиролиза прямогонного бензина с водяным паром в трубчатых печах, достигший практически предельных выходов целевой продукции. Этому способствовало непрерывное совершенствование основных узлов технологических схем развивающегося производства этилена. Главными целями производителей олефинов есть оптимизация капитальных вложений, обеспечение гибкости по продуктам и сырью, проведение процесса в более жёстких (по температуре и времени пребывания) условиях.



1.1 Кинетика и катализ


1.1.1 Теоретические основы термического пиролиза

Термическое разложение углеводородов представляет собой сложный процесс, который можно представить как ряд протекающих последовательно и параллельно химических реакций с образованием большого числа продуктов. Энергетические характеристики реакций, выражаемые термодинамическими соотношениями, определяют направления и максимальную равновесную степень превращения по ним исходных веществ. Равновесную степень превращения по химической реакции можно вычислить из уравнения зависимости константы равновесия Кр от изменения стандартной энергии Гиббса (свободной энергии, Gо):


.


Степень превращения исходных веществ по реакции является однозначной функцией константы равновесия Кр, аналитическое выражение которой определяется стехиометрией реакции.

В результате термического разложения углеводородов получаются различные продукты и в том числе низшие олефины, метан, а также другие алканы меньшей молекулярной массы, чем исходный. Так, при описании пиролиза этана молекулярными реакциями основной является реакция дегидрирования с образованием этилена. При пиролизе пропана наряду с дегидрированием до пропилена происходит расщепление до этилена и метана [1].

Аналогично реакциям дегидрирования и расщепления по двум направлениям можно представить разложение н-бутана. Алканы С24 разлагаются согласно молекулярным реакциям [1]:



(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)


Согласно расчетам [1], равновесное дегидрирование алканов С34 может пройти до конца при температуре 800-850оС, а дегидрирование этана – лишь при 900-950оС. Реакции расщепления алканов могут завершаться при более низкой температуре, порядка 250-450оС (Рисунок 1.1), причем, чем больше атомов С в молекуле исходного углеводорода, тем более низкой температуре соответствует его полное равновесное расщепление [1].


Рисунок 1.1 - Температурная зависимость равновесной степени превращения  алканов С3 - С4 по реакциям дегидрирования и расщепления

(Номера кривых 1, 2, 3, 4, 5, 6 соответствуют номерам реакций в тексте 1.1, 1.2, 1.3, 1.4, 1.5, 1.6)


Одной из реакций пиролиза алканов является разложение их на С и Н. С повышением температуры равновесная степень разложения алканов и олефинов по этой реакции возрастает, а ацетилена падает. Поэтому при температуре 1400оС ацетилен становится термодинамически более стойким, чем этилен. Стабильность углеводородов к разложению по этому направлению уменьшается с увеличением числа атомов углерода в молекуле. Практически в условиях пиролиза, т.е. при малом времени пребывания сырья в зоне реакции, распад алканов и олефинов на С и Н, несмотря на его большую равновесную вероятность, осуществляется из-за кинетических ограничений в небольшой степени [1].

Важнейший параметр процесса – температура – определяет степень превращения исходных веществ по реакциям, протекающим при пиролизе, так и распределение продуктов пиролиза. С увеличением температуре в результате первичной реакции повышаются выходы низших олефинов, метана и водорода и снижается выход алканов.

В условиях обычного пиролиза, когда глубина разложения исходных веществ достаточно велика, с определенной глубиной протекают и вторичные реакции, например разложение олефинов и диолефинов, образующиеся на первой стадии, реакции типа присоединения и т.д. Хотя скорость вторичных превращений в меньшей степени зависит от температуры, чем первичные, однако такая зависимость существует и характеризуется величинами энергии активации соответствующих реакций. Поэтому выходы продуктов реакций пиролиза углеводородов при различных температурах определяются не только зависимостью глубины превращения исходного вещества от температуры. Характер температурной зависимости выходов продуктов обычно более сложен и, как правило, устанавливается для различных видов сырья экспериментально.

Другим важным параметром пиролиза является время пребывания пиролизуемых веществ в зоне реакции, называемое иногда временем контакта. Под временем пребывания понимают промежуток времени, в течение которого поток реагирующего вещества находится в реакционном змеевике при таких температурах, когда реакция пиролиза протекает с значительной скоростью. Условной температурой начала реакции в случае углеводородов С510 (прямогонный бензин) можно считать 650оС (см. Рисунок 1.2).


Рисунок 1.2 - Зависимость выходов В продуктов пиролиза прямогонного бензина в зотермическом реакторе от температуры t:

1 – С2Н4; 2 – СН4; 3 – С3Н6; 4 – С4Н8; 5 – С4Н6


Скорость первичных реакций, в ходе которых образуются олефины, в большей мере возрастает с увеличением температуры, чем скорость вторичных, и для каждого из промежуточных продуктов – низших олефинов – существует оптимальное, зависящее от температуры, время пребывания реагента, причем с повышением температуры величина оптимального времени пребывания уменьшается.

Таким образом, увеличение температуры пиролиза с одновременным соответствующим сокращением времени пребывания способствует достижению более высоких выходов целевых продуктов, в том числе этилена.

Для углеводородов C6, при низкой температуре термодинамическая стабильность углеводородов разных классов при одинаковом числе углеводородных атомов в молекуле понижается:

Парафины > Нафтены > Олефины > Ароматические

Однако с ростом температуры ввиду разной зависимости изобарно изотермического потенциала от температуры порядок изменяется на обратный:

Ароматические > Олефины > Нафтены > Парафины

Таким образом, при термическом воздействии на нефтепродукты следует ожидать изменения группового состава углеводородов. Процесс расщепления парафина может происходить с образованием молекул олефинов и парафина с более короткой цепью углеродных атомов, причем обратный процесс представляет собой алкилирование парафина олефинов:


Сm+nH2(m+n)+2↔CmH2m+CnH2n+2 (1.7)


Примерно до 600К изменение энергии Гиббса (dGо) больше нуля, и, следовательно, расщепление парафинов термодинамически невозможно, а может происходить лишь алкилирование. При более высокой температуре положение меняется на обратное, причем при 800К и выше расщепление является уже практически необратимым процессом [3].

Для олефинов склонность к расщеплению проявляется при более высокой температуре, чем для парафинов. В системе обратимых реакций пиролиза олефина и его димеризации (полимеризации)


Cm+nH2(m+n) ↔ CmH2m + CnH2n (1.8)


перемена знака в изменении dGo для низших олефинов происходит только при 750-800К. Это указывает на термодинамическую возможность их полимеризации при термическом и каталитическом пиролизе, но с преобладанием расщепления при более высоких температурах.

Известные законы термодинамики позволяют оценить роль давления при термическом расщеплении нефтепродуктов. Повышение давления способствует смещению равновесия в сторону полимеризации олефинов и алкилирования парафинов, поскольку данные реакции протекают с уменьшением объема. В связи с этим высокое давление препятствует глубокому расщеплению сырья и снижает образование углеводородов и особенно олефинов. Очевидно, понижение давления и повышения температуры должны действовать в обратном направлении.


1.1.2 Теоретические основы каталитического пиролиза

Теоретические основы процесса каталитического пиролиза в настоящее время изучены недостаточно.

В качестве активных компонентов катализаторов для пиролиза в публикациях, предлагаемые отечественными и зарубежными исследователями, предлагаются соединения многих элементов периодической системы, в большинстве случаев оксиды металлов переменной валентности (например: ванадия, индия, марганца, железа, хрома, молибдена и др.), оксиды и алюминаты щелочных и щелочноземельных металлов (большей частью кальция и магния) и редкоземельных элементов, а также кристаллические или аморфные алюмосиликаты [1].

С целью выявления особенности процесса был изучен каталитический пиролиз ряда индивидуальных углеводородов в присутствии катализатора на основе окисла металла переменной валентности [2]. Опыты проводили на лабораторной установке проточного типа в кварцевом реакторе со стационарным слоем катализатора. В качестве каталитической системы был использован ванадиево-кислый калий-мета, нанесённый в количестве 20% масс. на природный алюмосиликат – пемзу. Результаты исследования показывают, что в присутствии катализатора конверсия исходного углеводорода и выход продуктов реакции значительно выше, чем при термическом пиролизе, проведённом в аналогичных условиях. Сопоставление данных по каталитическому и термическому пиролизу при одинаковой конверсии свидетельствует об определённом влиянии катализатора на распределение продуктов реакции. Так, например при каталитическом пиролизе всех изученных углеводородов выход на разложенное сырьё водорода, метана, этилена и окислов углерода больше, а пропилена, углеводородов С4 и кокса меньше, чем при том же значении конверсии в условиях термического пиролиза. Однако принципиальных различий в составе продуктов каталитического и термического пиролиза не наблюдается, что даёт основание предположить, что каталитический пиролиз представляет собой гомогенный процесс с гетерогенными стадиями и протекает по радикальному механизму, свойственному термическому пиролизу.

Рассмотрим вероятный механизм каталитического пиролиза на примере пропана. Достаточно высокая активность катализатора пиролиза проявляется только при высоких температурах, что свидетельствует о большой роли гомогенного зарождения. Для пропана оно протекает по уравнению:


(1.9)


Частично данная реакция может идти на поверхности катализатора. Это подтверждает энергия активации каталитического пиролиза пропана, которая составляет 182,1±5,4кДж/моль [4], в отличие от 239 кДж/кг [5] для термического пиролиза пропана, и свидетельствует о наличии гетерогенной составляющеё в стадии зарождения радикалов. Вместе с тем сравнительно высокое значение энергии активации ещё раз подтверждает большую роль гомогенного зарождения. Более вероятна на поверхности катализатора энергетически затруднённая реакция инициирования, заключающаяся в отрыве атома водорода от молекулы пропана:


(1.10)


Для развития цепи распада приняли схему, аналогичную термическому пиролизу пропана. Экспериментальные данные [2] показывают, что состав продуктов каталитического пиролиза пропана удовлетворительно отвечает этой схеме. Особенностью каталитического процесса является то, что отдельные реакции указанные в схеме, протекают на поверхности катализатора, что и влечёт за собой некоторые различия в распределении продуктов каталитического и термического пиролиза:


(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)


Рекомбинация:


(1.18)

(1.19)

(1.20)


При каталитическом пиролизе как пропана, так и других изученных углеводородов образуется больше водорода [2], возможно донором водорода при каталитическом пиролизе является вода, которая распадается на поверхности катализатора и способствует выделению водорода по следующим реакциям:


(1.21)

, (1.22)


где - углеводородный радикал поверхностного типа.

Дополнительное количество водорода при каталитическом пиролизе выделяется также за счёт того, что катализатор усиливает реакцию газификации кокса водяным паром. Об этом свидетельствует более высокое содержание С в СО, СО2 при каталитическом пиролизе всех исследованных углеводородов [2], тогда как суммы С в СО, СО2 и коксе при каталитическом и термическом пиролизе отличаются не столь значительно.

При каталитическом пиролизе парафиновых углеводородов, пропана и н-бутана, этилена образуется больше, а пропилена меньше, чем при термическом пиролизе [2]. Такая закономерность выполняется как при близкой к нулевой, так и при более высоких степенях превращения. Увеличение количества этилена при каталитическом пиролизе говорит, очевидно, о том, что в присутствии катализатора происходит преимущественное образование н-пропильного и первичного бутильного радикалов по отношению соответственно к изопропильному и вторичному бутильному или протекает изомеризация изопропильного и вторичного бутильного радикалов в первичные. При сравнительно высокой степени превращения различия в выходах этилена и пропилена может объясняться также различной глубиной протекания вторичных реакций превращения олефинов в условиях термического и каталитического процессов.

Таким образом, применение катализаторов пиролиза позволяет существенно увеличить скорость реакции собственно разложения (крекинга) углеводородов без увеличения скорости вторичных реакций типа присоединения, в которых расходуется этилен, другие алкены, алкадиены. Это приводит к увеличению выходов алкенов и позволяет применить более мягкие условия, чем при термическом пиролизе.

Вместе с тем значение вторичных реакций при каталитическом пиролизе возрастает с увеличением удельной поверхности (пористости) катализаторов, так как десорбция и переход в объём радикалов и алкенов с поверхности, расположенной внутри пор, затруднён. При этом повышается выход этилена и других низших олефинов.


1.2 Характеристика модификаций процесса пиролиза


К настоящему времени единственным освоенным и широко распространенным в промышленности методом пиролиза является термический пиролиз в трубчатых печах. Из известных ограничений процесса пиролиза в трубчатых печах немаловажное значение имеют и трудности с применением сырья, склонного к повышенному коксообразованию. Необходимость расширения сырьевой базы, а также удельных энергетических и материальных затрат привела к разработке новых модификаций процесса, в основном рассчитанных на пиролиз тяжелых видов углеводородного сырья. Разрабатываются не только процессы пиролиза утяжеленного сырья (мазут, вакуумный газойль, нефть), но и принципиально новые методы со значительным повышением выходов этилена.


1.2.1 Термический гомогенный пиролиз

Главными целями производителей этилена всегда были оптимизация капитальных вложений, обеспечение гибкости по продуктам и сырью, высокой надежности и энергетического КПД. Одним из способов снижения издержек производства заключается в увеличении мощности установки. Крупномасштабные установки отличаются более низким капитальными и эксплуатационными расходами на тонну этилена.

Основными задачами на данный момент являются: повышение прочности и долговечности труб и минимизации капиталовложений и эксплуатационных расходов. Вот несколько технических решений в этом направлении:

а) Применение закалочных холодильников с прямыми трубами, что позволило уменьшить количество механических чисток;


Случайные файлы

Файл
60990.rtf
123862.rtf
183527.rtf
25711.doc
149310.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.