Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам (86407)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет имени Франциска Скорины"


Математический факультет

Кафедра алгебры и геометрии


Допущена к защите

Зав. кафедрой Шеметков Л.А.

" " 2005г.


Дипломная работа


«Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам»



Исполнитель

студентка группы М-51

Рубан Е.М.


Руководитель

Д. ф-м н., профессор Монахов В.С.






Гомель 2005


СОДЕРЖАНИЕ


Введение

1. Подгруппа Фиттинга и её свойства

2. -длина -разрешимой группы

3. Группа с нильпотентными добавлениями к подгруппам

4. Используемые результаты

Заключение

Список использованных источников



ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ


Рассматриваются только конечные группы. Используются следующие обозначения.

- простые числа.

- знак включения множеств;

- знак строгого включения;

и - соответственно знаки пересечения и объединения множеств;

- пустое множество;

- множество всех для которых выполняется условие ;

- число сравнимо с числом по модулю .

- множество всех простых чисел;

- некоторое множество простых чисел, т.е. ;

- дополнение к во множестве всех простых чисел; в частности, ;

примарное число - любое число вида , ;

- множество всех целых положительных чисел.

- единичная группа;

- единичная матрица размерности ;

- полная линейная группа степени над полем из элементов, т.е. группа всех невырожденных линейных преобразований -мерного линейного пространства над полем из элементов;

) - специальная линейная группа степени над полем из элементов.

) - проективная специальная линейная группа степени над полем из элементов, т.е. факторгруппа специальной линейной группы по ее центру

- конечное поле порядка .

Пусть - группа. Тогда:

- порядок группы ;

- порядок элемента группы ;

- единичный элемент и единичная подгруппа группы ;

- также единичная подгруппа группы ;

- множество всех простых делителей порядка группы ;

- множество всех различных простых делителей натурального числа ;

-группа - группа , для которой ;

-группа - группа , для которой ;

Группа называется:

примарной, если ;

бипримарной, если .

- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;

- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;

- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;

- наибольшая нормальная разрешимая подгруппа группы ;

- наибольшая нормальная подгруппа нечетного порядка группы ;

- наибольшая нормальная -подгруппа группы ;

- -холловская подгруппа группы ;

- силовская -подгруппа группы ;

- дополнение к силовской -подгруппе в группе , т.е. -холловская подгруппа группы ;

- группа всех автоморфизмов группы ;

- главный ранг группы ;

- -главный ранг группы ;

- является максимальной подгруппой группы ;

Пусть - максимальная цепь подгрупп, т.е. для всех . Если разрешима, то все индексы максимальной цепи примарны, т.е. . Тогда:


.


При введении обозначений и рассматриваются все максимальные цепи.

- -длина группы ;

- нильпотентная длина группы ;

- производная длина группы ;

- является подгруппой группы ;

- является собственной подгруппой группы ;

нетривиальная подгруппа - неединичная собственная подгруппа;

- является нормальной подгруппой группы ;

- является минимальной нормальной подгруппой группы ;

- является субнормальной подгруппой группы ;

- подгруппа характеристична в группе , т.е. для любого автоморфизма ;

- индекс подгруппы в группе ;

;

- ядро подгруппы в группе , т.е. пересечение всех подгрупп, сопряжённых с в ;

- подгруппа, порожденная всеми подгруппами, сопряженными с подгруппой из элементами из , то есть ;

- централизатор подгруппы в группе ;

- нормализатор подгруппы в группе ;

- центр группы ;

- циклическая группа порядка ;

- симметрическая группа степени ;

- знакопеременная группа степени .

Если и - подгруппы группы , то:

- прямое произведение подгрупп и ;

- полупрямое произведение нормальной подгруппы и подгруппы ;

- и изоморфны.

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная всеми , для которых выполняется .

Группу называют:

-замкнутой, если ;

-нильпотентной, если ;

-разложимой, если и нормальны в .

Ряд подгрупп называется:

субнормальным, если для любого ;

нормальным, если для любого ;

главным, если для всех .


ВВЕДЕНИЕ


Начало развития исследований в области теории конечных групп в Гомеле связано с приездом в 1953 году профессора Сергея Антоновича Чунихина в только что открывшейся Белорусский государственный институт инженеров железнодорожного транспорта, ныне - Белорусский государственный университет транспорта. Здесь он возглавил кафедру высшей математики, а позднее в 1959 году создал лабораторию теории конечных групп Института математики Академии наук Беларуси и в 1964 году кафедру алгебры и геометрии Гомельского педагогического института, преобразованного в 1969 году в университет. В 1956 году он был избран членом-корреспондентом АН БССР, а в1966 году - академиком АН БССР.

За время работы С.А. Чунихина в г. Гомеле в 1953-1985 гг. создана крупная научная алгебраическая школа, активно развивающая в настоящее время под руководством члена-корреспондента НАН Беларуси профессора Л.А. Шеметкова различные направления современной теории конечных групп и теории классов алгебраических систем. Об этом свидетельствуют монографии участников Гомельского алгебраического семинара С.А. Чунихина, Л.А. Шеметкова, А.Н. Скибы, М.В. Селькина, С.Ф. Каморникова, Го Вэньбина. К учебным изданиям по теории групп участников Гомельского алгебраического семинара следует отнести прежде всего машинописные варианты текстов лекций С.А. Чунихина и Л.А. Шеметкова, а также учебные пособия Л.А. Шеметкова, В.А. Ведерникова, В.С. Монахова и А.Н. Скибы.

В работе [1] Л. А. Шеметков ввёл понятие добавления (см. также [2,с.132]). Добавлением к подгруппе конечной группы называется такая подгруппа из , что , но для любой собственной подгруппы из . Если, кроме того, , то называется дополнением к подгруппе .

Ф. Холл установил строение конечной группы, у которой все подгруппы дополняемы [3, 4, c. 291]. Поскольку в каждой конечной группе любая подгруппа обладает добавлением, то аналогичная задача относительно добавлений охватывает класс всех конечных групп. Однако при дополнительных ограничениях на добавления или на добавляемые подгруппы можно выделить разнообразные классы групп.

Известно, что конечные разрешимые группы можно охарактеризовать как конечные группы, у которых дополняемы все силовские подгруппы. Эта теорема Ф. Холла [12] явилась источником развития одного из направлений теории групп, состоящего в исследовании строения групп с выделенными системами дополняемых подгрупп. Как отмечает в своей монографии С.Н. Черников [10,с.11]: "Изучение групп с достаточно широкой системой дополняемых подгрупп обогатило теорию групп многими важными результатами". К настоящему времени выделены и полностью изучены многие новые классы групп. При этом наметилась тенденция к обобщениям как самого понятия дополняемой подгруппы, так и способа выделения системы дополняемых подгрупп. Системы дополняемых подгрупп выделялись, например, с помощью таких понятий как примарность, абелевость, цикличность, нормальность и других свойств конечных групп и их комбинаций, а вместо дополняемости рассматривались -дополняемость (если пересечение подгруппы с добавлением циклическое), -плотность (если для любых двух абелевых подгрупп группы , из которых первая не максимальна во второй, в существует дополняемая (абелева) подгруппа, строго содержащаяся между ними), и др. Обзор результатов этого направления можно найти в [10].

Подобная тематика исследуется и в теории формаций. В работах В.А. Ведерникова [5,6], Го Вэнь Биня [11], А.Н. Скибы [7], Л.А. Шеметкова [8] и других авторов исследовались формации с системами дополняемых подформаций. Обзор результатов этого направления можно найти в [9].

Однако условие существования дополнений к отдельным подгруппам является достаточно сильным ограничением. Далеко не все подгруппы обладают дополнениями. Вместе с тем каждая подгруппа обладает минимальным добавлением. Поэтому для исследования строения конечных групп с системами добавляемых подгрупп необходимо вводить дополнительные ограничения на минимальные добавления.

В настоящей дипломной работе изложены основы теории нильпотентной длины конечной разрешимой группы. Целью дипломной работы является исследование величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. В работе рассмотрены следующие вопросы: подгруппа Фиттинга конечной разрешимой группы и ее свойства; нильпотентная длина и другие инварианты конечной разрешимой группы; признаки разрешимости конечной группы с извесными добавлениями к максимальным погруппам; нахождение величины нильпотентной длины разрешимой группы с известными добавлениями к максимальным подгруппам.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.