Некоторые линейные операторы (86340)

Посмотреть архив целиком

Содержание


Введение

§1. Определение линейного оператора. Примеры

§2. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора

§3. Обратный оператор. Спектр оператора и резольвента

§4. Оператор умножения на непрерывную функцию

§5. Оператор интегрирования

§6. Оператор дифференцирования

§7. Оператор сдвига

Заключение



Введение


Наиболее доступными для изучения среде операторов, действующих в линейных нормированных пространствах, являются линейные операторы. Они представляют собой достаточно важный класс операторов, так как среди них можно найти операторы алгебры и анализа.

Целью дипломной работы является показать некоторые из линейных операторов, исследовать их на непрерывность и ограниченность, найти норму ограниченного оператора, а также спектр оператора и его резольвенту.

В первом и втором параграфах приведены основные сведения теории операторов: определение линейного оператора, непрерывности и ограниченности линейного оператора, его нормы. Рассмотрены некоторые примеры.

В третьем параграфе даны определения обратного оператора, спектра оператора и его резольвенты. Рассмотрены примеры.

В четвертом параграфе исследуется оператор умножения на непрерывную функцию: Ах(t) = g(t)x(t).

В пятом параграфе приведен пример оператора интегрирования Аf(t)=.

В седьмом параграфе исследуется оператор сдвига Af(x) = f(x+a).

Показана линейность, непрерывность, ограниченность, найдена норма, точки спектра и резольвента всех трех операторов.

В шестом параграфе исследуется оператор дифференцирования Дf(x)=f/(x), в пространстве дифференцируемых функции D[a, b]. Показана его линейность. Доказано, что Д не является непрерывным оператором, а также как из неограниченности оператора следует его разрывность.



§1. Определение линейного оператора. Примеры


Определение 1. Пусть Ex и Ey 1– линейные пространства над полем комплексных (или действительных) чисел. Отображение А: Ex  Ey называется линейным оператором, если для любых элементов х1 и х2 пространства Ex и любого комплексного (действительного) числа выполняются следующие равенства 2:

  1. А(х12) = Ах1 + Ах2;

  2. А(х) = А(х);

Примеры линейных операторов:

1) Пусть Е = Е1 – линейное топологическое пространство. Оператор А задан формулой:

Ax = x для всех x Е.

Такой оператор, переводящий каждый элемент пространства в себя является линейным и называется единичным оператором.

2) Рассмотрим D[a,b] – пространство дифференцируемых функций, оператор дифференцирования Д в пространстве D[a,b] задан формулой:

Дf(x) = f/(x).

Где f(x) D[a, b], f/(x) C[a, b].

Оператор Д определен не на всем пространстве C[a, b], а лишь на множестве функций имеющих непрерывную производную. Его линейность, очевидно, следует из свойств производной.

3) Рассмотрим пространство С[-, +] – пространство непрерывных и ограниченных функций, оператор А сдвигает функцию на const a:

Аf(x) = f(x+a).

Проверим линейность оператора А:

1) А(f+g) = (f+g)(x+a) = f(x+a) + g(x+a) = А(f) + А(g).

Исходя из определения суммы функции, аксиома аддитивности выполняется.

2) A(kf(x)) = kf(x+a) = kA(f(x)).

Верна аксиома однородности.

Можно сделать вывод, что А – линейный оператор.

4) Пусть (пространство непрерывных функций на отрезке [0,1], и дано отображение 1, заданное формулой:

Так как интеграл с переменным верхним пределом от непрерывной функции является функцией дифференцируемой, а, следовательно, непрерывной, то . В силу линейности определенного интеграла данное отображение является линейным оператором.



§2. Непрерывные линейные операторы в нормированном

пространстве. Ограниченность и норма линейного оператора


Пусть , – нормированные пространства.

Определение 2 .Оператор А: Е Е1 называется непрерывным в точке , если какова бы не была последовательность xn x0, А(xn) сходится к А(x0). То есть, при p (xn, x0) 0, p (А(xn), А(x0)) 0.

Известно и другое (равносильное) определение непрерывности линейного оператора.

Определение 3. Отображение А называется непрерывным в точке x0, если какова бы не была окрестность3 U точки y0 = А (x0) можно указать окрестность V точки x0 такую, что А(V) U.

Иначе >0 >0, что как только p (x, x0) < , p (f(x), f(x0)) < .

Теорема 1.

Если линейный оператор непрерывен в точке х0 = 0, то он непрерывен и в любой другой точке этого пространства.

Доказательство. Линейный оператор А непрерывен в точке х0=0 тогда и только тогда, когда . Пусть оператор А непрерывен в точке х0=0. Возьмем последовательность точек пространства хnх1, тогда хn–х10, отсюда А(хn–х1)А(0)=0, т. е. А(хn–х1)0.

Так как А – это линейный оператор, то А(хn–х1)Ахn–Ах0, а тогда

Ахn-Ах0  0, или АхnАх0.

Таким образом, из того, что линейный оператор А непрерывен в точке х0=0, следует непрерывность в любой другой точке пространства.

т. д-на.

Пример.

Пусть задано отображение F(y) = y(1) пространства С[0, 1] в R. Проверим, является ли это отображение непрерывным.

Решение.

Пусть y(x) – произвольный элемент пространства С[0, 1] и yn(x) – произвольная сходящаяся к нему последовательность. Это означает:

p (yn, y) = |yn(x)- y(x))| = 0.

Рассмотрим последовательность образов: F(yn) = yn(1).

Расстояние в R определено следующим образом:

p (F(yn), F(y)) = |F(yn) - F(y))| = | yn(1) - y(1)| |yn(x)- y(x))|=p(yn,y),

то есть p (F(yn), F(y)) 0.

Таким образом, F непрерывно в любой точке пространства С[a, b], то есть непрерывно на всем пространстве.

С понятием непрерывности линейного оператора тесно связано понятие ограниченности.

Определение 4. Линейный оператор А: Е Е1 называется ограниченным, если можно указать число K>0 такое, что

||Аx|| K||x||. (1)

Теорема 2.

Среди всех констант K, удовлетворяющих (1), имеется наименьшее.

Доказательство:

Пусть множество S – множество всех констант K, удовлетворяющих (1), будучи ограниченным снизу (числом 0), имеет нижнюю грань k. Достаточно показать, что k S.

По свойству нижней грани в S можно указать последовательность (kn), сходящуюся к k. Так как kn S, то выполняется неравенство: |А(x)| kn||x||, (xE). Переходя в этом неравенстве к пределу

получаем |А(x)| k||x||, где (xE), (k S).

т. д-на.

Определение 5. Наименьшая из этих констант K, для которых выполняется неравенство (1), называется нормой оператора А и обозначается ||A||4.

||А|| K, для K, подходящего для (1), то есть |А(x)| ||А||||x||, где

||А|| = xE.

Между ограниченностью и непрерывностью линейного оператора существует тесная связь, а именно справедлива следующая теорема.


Теорема 3.

Для того, чтобы линейный оператор А действующий из Ex в Ey был ограничен, необходимо и достаточно, чтобы оператор А был непрерывен.

Необходимость:

Дано: А – ограничен;

Доказать: А – непрерывен;

Доказательство:

Используя теорему 1 достаточно доказать непрерывность А в нуле.

Дано, что ||Аx|| K||x||.

Докажем, что А непрерывен в нуле, для этого должно выполняться >0, >0 что ||x||< ||Ax|| < .

Выберем так, чтобы K*||x|| < , ||x|| < , (К>0), значит = , тогда если ||x||< , то ||Аx|| K||x|| < K =

Непрерывность в нуле доказана, следовательно доказана непрерывность в точке.

Достаточность:

Дано: А – непрерывен;

Доказать А – ограничен;

Доказательство:

Допустим, что А не ограничен. Это значит, что числу 1 найдется хотя бы один соответственный вектор x1 такой, что ||A x1|| > 1|| x1||.

Числу 2 найдется вектор x2, что ||A x2|| > 2|| x2|| и т.д.

Числу n найдется вектор xn, что ||A xn|| > n|| xn||.

Теперь рассмотрим последовательность векторов yn = , где

||yn|| = .

Следовательно последовательность yn 0 при n .

Так как оператор А непрерывен в нуле, то Аyn 0, однако

||Аyn || = ||A|| = ||Axn || > n|| xn|| = 1, получаем противоречие с Аyn 0, то есть А – ограничен

Для линейных операторов ограниченность и непрерывность оператора эквивалентны.


Примеры.

1) Покажем, что норма функционала5 F(y) = в C[a, b], где p(x) – непрерывная на [a,b] функция, равна .

По определению 5: ||F|| = |F(x)| = ||.

|| || = |y(x)||| |y(x)|||;

||F|| = (|y(x)|||) = ||y(x)|||| = || .

Таким образом, норма F(y) = будет ||F|| = ;

2) Найдем норму функционала, определенного на C[0, 2], где p(x)=(x-1)

F(y) = .

По выше доказанному ||F|| = = 1.



§3. Обратный оператор. Спектр оператора и резольвента


Пусть , – нормированные пространства, – линейный оператор, DA- область определения оператора, а RA – область значений.

Определение 6. Оператор А называется обратимым, если для любого элемента у, принадлежащего RA, уравнение Ах=у имеет единственное решение.

Если оператор А обратим, то каждому элементу у, принадлежащему RA, можно поставить в соответствие единственный элемент х, принадлежащий DA и являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным оператором к оператору А и обозначается А-1.

Теорема 4.

Для того чтобы линейный оператор имел ограниченный обратный оператор необходимо и достаточно, чтобы выполнялось неравенство:

, (m>0).

Доказательство:

Достаточность.

Пусть выполняется данное неравенство. Тогда равенство Ax=0 возможно лишь тогда, когда x – нулевой вектор. Получим 0 m*||x||, отсюда ||x|| 0, но так как норма не может быть <0, то x=0. А обращается в ноль лишь на нулевом векторе. Итак, А-1 существует.


Случайные файлы

Файл
16515.rtf
59182.rtf
150873.rtf
122041.doc
130798.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.